精英家教网 > 高中数学 > 题目详情

【题目】在某市高三教学质量检测中,全市共有名学生参加了本次考试,其中示范性高中参加考试学生人数为人,非示范性高中参加考试学生人数为人.现从所有参加考试的学生中随机抽取人,作检测成绩数据分析.

(1)设计合理的抽样方案(说明抽样方法和样本构成即可);

(2)依据人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;

【答案】(1)见解析;(2)92.4

【解析】

1)根据总体的差异性选择分层抽样,再结合抽样比计算出非示范性高中和示范性高中所抽取的人数;

2)将每个矩形底边的中点值乘以相应矩形的面积所得结果,再全部相加可得出本次测验全市学生数学成绩的平均分。

1)由于总体有明显差异的两部分构成,故采用分层抽样,

由题意,从示范性高中抽取人,

从非师范性高中抽取人;

2)由频率分布直方图估算样本平均分为

推测估计本次检测全市学生数学平均分为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C方程:+=1(a>b>0),M(x0 , y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)若椭圆的离心率为e,证明|MF|=a﹣ex0
(2)已知不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且A,B两点都在y轴的右侧,若a=2,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与以为直径的圆所在平面垂直,中点,是圆周上一点,且

1)求异面直线所成角的余弦值;

2)设点是线段上的点,且满足,若直线平面,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.

(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;

(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;

(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.

参考数据: .

参考公式:(计算时精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为的直线与椭圆交于两点是以为直角顶点的等腰直角三角形则椭圆的离心率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(Ⅰ)求 的值;
(Ⅱ)若A=60°,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 恰有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足;② ,且时,都有;③ ,且时,都有,则称为“偏对称函数”.现给出四个函数:;② ; ③;④.则其中是“偏对称函数”的函数序号为 _______

查看答案和解析>>

同步练习册答案