精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正三棱柱的底面边长是2,侧棱长是的中点.

(Ⅰ)求证:平面

(Ⅱ)在线段上是否存在一点,使得平面平面?若存在,求出的长;若不存在,说明理由.

【答案】I)见解析;(II)存在点,使得平面平面,且

【解析】

(I)连接AB1A1B于点M,连接MD.利用中位线定理得出B1CMD,故而B1C∥平面A1BD

(II)作COAB于点O,以O为坐标原点建立空间坐标系,设AEa,分别求出平面B1C1E和平面A1BD的法向量,令两法向量垂直解出a

I)连接于点,连接

∵三棱柱是正三棱柱,∴四边形是矩形,

的中点.

的中点,∴

平面平面

平面

II)作于点,则平面

为坐标原点建立空间直角坐标系如图,假设存在点,设

的中点,∴

设是平面的法向量为,∴

,令,得

,则

设平面的法向量为,∴

,令,得

∵平面平面,∴

,解得

∴存在点,使得平面平面,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量(2,1)(xy)

(1)xy分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率;

(2)xy在区间[1,6]内取值,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数,且满足 ,数列满足),则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

1)求成绩在50-70分的频率是多少

2)求这三个年级参赛学生的总人数是多少:

3)求成绩在80-100分的学生人数是多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近13年的宣传费和年销售量 数据作了初步处理得到下面的散点图及一些统计量的值

由散点图知建立关于的回归方程是合理的经计算得如下数据

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根据以上信息,建立关于的回归方程

(2)已知这种产品的年利润的关系为根据(1)的结果,求当年宣传费年利润的预报值是多少

对于一组数据其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过点P作圆M的切线PAPB,切点为AB.

()APB60°,试求点P的坐标;

()若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足下列条件:在定义域内存在,使得成立,则称函数具有性质;反之,若不存在,则称函数不具有性质.

1)已知函数具有性质,求出对应的的值;

2)证明:函数一定不具有性质

3)下列三个函数:,哪些恒具有性质,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是矩形,平面 平面,点分别为中点.

1)求证: 平面

2,求平面DEF与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案