【题目】有下列命题:①若,则;②若,则存在唯一实数,使得;③若,则;④若,且与的夹角为钝角,则;⑤若平面内定点满足,则为正三角形.其中正确的命题序号为 ________.
【答案】③⑤
【解析】
①:根据零向量与任一平面向量平行进行判断即可;
②:根据零向量与任一平面向量平行进行判断即可;
③:对已知向量等式进行平方,根据平面向量的运算性质进行求解即可;
④:根据平面向量夹角的坐标表示公式,结合钝角的取值范围进行求解即可;
⑤:根据平面向量加法的几何意义,结合可以判断出点是的重心,再根据平面向量减法的几何意义,结合,可以判断出点是的垂心,这样可以确定的形状.
①:当时,显然满足,但是不一定成立,故本命题是假命题;
②:当时,显然成立,存在实数,使得,但是不是唯一的,故本命题是假命题;
③:因为,
所以,故本命题是真命题;
④:设与的夹角为,所以当时,
则有且,
即且,
解得且,故本命题是假命题;
⑤:因为所以,设中边上的中点为,
如图所示;
由平面向量的加法的几何意义可知;,
所以,因此点是的重心.
,
因此有,同理可得,所以点是的垂心,
因此为正三角形,故本命题是真命题.
故答案为;③⑤
科目:高中数学 来源: 题型:
【题目】某移动支付公司随机抽取了100名移动支付用户进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
A. 56 B. 60 C. 120 D. 140
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)设命题实数满足,其中,命题实数满足.若是的充分不必要条件,求实数的取值范围.
(Ⅱ)已知命题方程表示焦点在x轴上双曲线;命题空间向量,的夹角为锐角,如果命题“”为真,命题“”为假.求的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ)求证:AB∥平面DEG;
(Ⅱ)求二面角C-DF-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是公差不为零的等差数列,满足,且、、成等比数列.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
【答案】(1);(2)
【解析】试题分析:(1)设等差数列 的公差为,由a3=7,且、、成等比数列.可得,解之得即可得出数列的通项公式;
2)由(1)得,则,由裂项相消法可求数列的前项和.
试题解析:(1)设数列的公差为,且由题意得,
即 ,解得,
所以数列的通项公式.
(2)由(1)得
,
.
【题型】解答题
【结束】
18
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).
(1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数为偶函数,求实数的值;
(2)若,,且函数在上是单调函数,求实数的值;
(3)若,若当时,总有,使得,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com