【题目】为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 附:k2= ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(1)根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关
优秀 | 非优秀 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(2)为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为 ,得80分以上的概率为 ,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X表示甲班通过预选的人数,求X的分布列及期望E(X).
【答案】
(1)解:2×2列联表如下
优秀 | 非优秀 | 总计 | |
甲班 | 40 | 20 | 60 |
乙班 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
K2= ≈7.8>6.635,
所以有99%的把握认为环保知识与专业有关
(2)解:不妨设3名同学为小王,小张,小李且小王为优秀,记事件M,N,R分别表示小王,小张,小李通过预选,则P(M)= ,P(N)=P(R)=
随机变量X的取值为0,1,2,3
所以P(X=0)=P( )= × × = ,
P(X=1)=P(M + N + R)= × × + × × + × × = ,
P(X=2)=P(MN + NR+M R)= × × + × × + × × = ,
P(X=3)=P(MNR)= × × =
所以随机变量X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
E(X)=0× +1× +2× +3× =
【解析】(1)由题设条件作出列联表,根据列联表中的数据,得到K2= ≈7.8>6.635.由此得到有99%的把握认为环保知识测试与专业有关.(2)由题设知X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过尾/立方米时, 的值为千克/年;当时, 是的一次函数,且当时, .
()当时,求关于的函数的表达式.
()当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn , 若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,直线的参数方程为(为参数),若与交于两点.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)设,求的值.
【答案】(1);(2)1.
【解析】试题分析:(1)先根据 将圆的极坐标方程化为直角坐标方程;(2)先将直线参数方程调整化简,再将直线参数方程代入圆直角坐标方程,根据参数几何意义得,最后利用韦达定理求解
试题解析:(Ⅰ)由,得,
(Ⅱ)把,
代入上式得,
∴,则, ,
.
【题型】解答题
【结束】
23
【题目】证明:(Ⅰ)已知是正实数,且.求证: ;
(Ⅱ)已知,且, , .求证: 中至少有一个是负数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是R上的偶函数,在(﹣3,﹣2)上为减函数且对x∈R都有f(2﹣x)=f(x),若A,B是钝角三角形ABC的两个锐角,则( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)与与f(cosB)的大小关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为 .
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:
投资A商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投资B商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆:上任意一点,点与点关于原点对称,线段的垂直平分线与交于点.
(1)求点的轨迹的方程;
(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 | 低谷时间段用电价格表 | ||
高峰月用 电量(单 位:千瓦时) | 高峰电价 (单位:元/ 千瓦时) | 低谷月用 电量(单位: 千瓦时) | 低谷电价 (单位:元/ 千瓦时) |
50及以下 的部分 | 0.568 | 50及以下 的部分 | 0.288 |
超过 50 至 200 的部分 | 0.598 | 超过 50 至 200 的部分 | 0.318 |
超过200 的部分 | 0.668 | 超过 200 的部分 | 0.388 |
若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com