精英家教网 > 高中数学 > 题目详情

【题目】为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 附:k2= ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879


(1)根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关

优秀

非优秀

总计

甲班

乙班

30

总计

60


(2)为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为 ,得80分以上的概率为 ,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X表示甲班通过预选的人数,求X的分布列及期望E(X).

【答案】
(1)解:2×2列联表如下

优秀

非优秀

总计

甲班

40

20

60

乙班

20

30

50

总计

60

50

110

K2= ≈7.8>6.635,

所以有99%的把握认为环保知识与专业有关


(2)解:不妨设3名同学为小王,小张,小李且小王为优秀,记事件M,N,R分别表示小王,小张,小李通过预选,则P(M)= ,P(N)=P(R)=

随机变量X的取值为0,1,2,3

所以P(X=0)=P( )= × × =

P(X=1)=P(M + N + R)= × × + × × + × × =

P(X=2)=P(MN + NR+M R)= × × + × × + × × =

P(X=3)=P(MNR)= × × =

所以随机变量X的分布列为:

X

0

1

2

3

P

E(X)=0× +1× +2× +3× =


【解析】(1)由题设条件作出列联表,根据列联表中的数据,得到K2= ≈7.8>6.635.由此得到有99%的把握认为环保知识测试与专业有关.(2)由题设知X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn , 若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系已知圆的极坐标方程为直线的参数方程为为参数),若交于两点.

(Ⅰ)求圆的直角坐标方程

(Ⅱ)设的值.

【答案】(1);(2)1.

【解析】试题分析:(1)先根据 将圆的极坐标方程化为直角坐标方程(2)先将直线参数方程调整化简,再将直线参数方程代入圆直角坐标方程,根据参数几何意义得,最后利用韦达定理求解

试题解析:(Ⅰ)由,得

(Ⅱ)把

代入上式得

,则

.

型】解答
束】
23

【题目】证明:(Ⅰ)已知是正实数.求证

(Ⅱ)已知 .求证 中至少有一个是负数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是R上的偶函数,在(﹣3,﹣2)上为减函数且对x∈R都有f(2﹣x)=f(x),若A,B是钝角三角形ABC的两个锐角,则(
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)与与f(cosB)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体经营者把开始六个月试销AB两种商品的逐月投资与所获纯利润列成下表:

投资A商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.65

1.39

1.85

2

1.84

1.40

投资B商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.25

0.49

0.76

1

1.26

1.51

该经营者准备下月投入12万元经营这两种产品,但不知投入AB两种商品各多少才最合算请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上任意一点,点与点关于原点对称,线段的垂直平分线与交于.

(1)求点的轨迹的方程;

(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表

低谷时间段用电价格表

高峰月用

电量(单

位:千瓦时)

高峰电价

(单位:元/

千瓦时)

低谷月用

电量(单位:

千瓦时)

低谷电价

(单位:元/

千瓦时)

50及以下

的部分

0.568

50及以下

的部分

0.288

超过 50 至

200 的部分

0.598

超过 50 至

200 的部分

0.318

超过200

的部分

0.668

超过 200

的部分

0.388

若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)

查看答案和解析>>

同步练习册答案