精英家教网 > 高中数学 > 题目详情

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(1)求证:平面
(2)求折后直线与平面所成角的余弦值.

(1)(2)

解析试题分析:(1)连接,欲证平面,只要证点是点在平面内的射影,易证在平面图中,
此结论在折后的空间几何体中仍成立平面平面平面在平面内的射影在直线上,结合已知条件,知点在平面上的射影又恰在直线是点在平面内的射影,从而结论得证.利用勾股定理求出相关线段的长度即可在直角三角形求出的值.

(2)连接,由(1)知,在平面内的射影,就是所求的线面角,
试题解析:(1)由平面  
则平面 平面  
平面 
在平面 上的射影在直线 上,
在平面 上的射影在直线 上,
在平面 上的射影即为点
平面  
(2)连接 ,由 平面 ,得 即为直线 与平面所成的角,
在原图中,由已知,可得 
折后,由 平面,知 
 ,即 
则在中,有,则

即折后直线与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,为圆柱的母线,是底面圆的直径,分别是的中点,
(1)证明:
(2)证明:
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高.

(1)证明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;
(3)证明:EF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在的平面与平面垂直,的交点,,且
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,G是上的动点。

(l)求证:平面ADG
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

同步练习册答案