4£®ÓÐÒÔÏÂÁ½¸öÍÆÀí¹ý³Ì£º
£¨1£©ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa10=0£¬ÔòÓеÈʽa1+a2+¡­+an=a1+a2+¡­+a19-n£¨n£¼19£¬n¡ÊN*£©³ÉÁ¢£®ÏàÓ¦µØ£¬ÔڵȱÈÊýÁÐ{bn}ÖУ¬Èôb10=1£¬ÔòÓеÈʽb1b2¡­bn=b1b2¡­b19-n£¨n£¼19£¬n¡ÊN*£©£»
£¨2£©ÓÉ1=12£¬1+3=22£¬1+3+5=32£¬1+3+5+¡­+£¨2n-1£©=n2£®
Ôò£¨1£©£¨2£©Á½¸öÍÆÀí¹ý³Ì·Ö±ðÊôÓÚ£¨¡¡¡¡£©
A£®¹éÄÉÍÆÀí¡¢ÑÝÒïÍÆÀíB£®Àà±ÈÍÆÀí¡¢ÑÝÒïÍÆÀí
C£®¹éÄÉÍÆÀí¡¢Àà±ÈÍÆÀíD£®Àà±ÈÍÆÀí¡¢¹éÄÉÍÆÀí

·ÖÎö £¨1£©¸ù¾ÝÀà±ÈµÄ·½·¨£¬ºÍÀà±È»ý£¬¼ÓÀà±È³Ë£¬ÓÉ´ËÀà±ÈµÃ³ö½áÂÛ£»£¨2£©ÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí£¬ÊǹéÄÉÍÆÀí£®

½â´ð ½â£º£¨1£©ÊǵȲîÊýÁÐÓëµÈ±ÈÊýÁнáÂÛµÄÀà±È£¬ÊôÓÚÀà±ÈÍÆÀí£»
£¨2£©ÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí£¬ÊǹéÄÉÍÆÀí£¬
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÁËÀà±ÈÍÆÀí¡¢¹éÄÉÍÆÀíµÄ·½·¨ºÍÓ¦ÓÃÎÊÌ⣬½âÌâʱӦÕÆÎÕºÃÀà±ÈÍÆÀí¡¢¹éÄÉÍÆÀíµÄ¸ÅÄÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª º¯Êýf£¨x£©=sin£¨x+$\frac{¦Ð}{2}$£©+cos£¨x-$\frac{¦Ð}{2}$£©+mµÄ×î´óֵΪ2$\sqrt{2}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®$\sqrt{2}$C£®$\frac{\sqrt{2}}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Å×ÎïÏßy2=4xÉÏÒ»µãMµ½½¹µãµÄ¾àÀëΪ5£¬ÔòµãMµÄºá×ø±êΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®»¯¼ò£º$\frac{{2sin£¨{¦Ð-¦È}£©+sin2¦È}}{{{{cos}^2}\frac{¦È}{2}}}$=4sin¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+cos¦Á\\ y=4+sin¦Á\end{array}\right.$£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬ÇúÏßC2µÄ·½³ÌΪ¦Ñ£¨cos¦È-msin¦È£©+1=0£¨mΪ³£Êý£©£®
£¨1£©ÇóÇúÏßC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèPµãÊÇC1Éϵ½xÖá¾àÀë×îСµÄµã£¬µ±C2¹ýµãPʱ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÔ²M£º£¨x-a£©2+y2=4£¨a£¾0£©ÓëÔ²N£ºx2+£¨y-1£©2=1ÍâÇУ¬ÔòÖ±Ïßx-y-$\sqrt{2}$=0±»Ô²M½ØµÃÏ߶εij¤¶ÈΪ£¨¡¡¡¡£©
A£®1B£®$\sqrt{3}$C£®2D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®2016Äê˫ʮһÆڼ䣬ijµç×Ó²úÆ·ÏúÊÛÉÌ´ÙÏúijÖÖµç×Ó²úÆ·£¬¸Ã²úÆ·µÄ³É±¾Îª2Ôª/¼þ£¬Í¨¹ýÊг¡·ÖÎö£¬Ë«Ê®Ò»ÆÚ¼ä¸Ãµç×Ó²úÆ·ÏúÊÛÁ¿y£¨µ¥Î»£ºÇ§¼þ£©ÓëÏúÊÛ¼Û¸ñx£¨µ¥Î»£ºÔª£©Ö®¼äÂú×ã¹Øϵʽ£ºy=$\frac{a}{x-2}$+2x2-35x+170£¨ÆäÖÐ2£¼x£¼8£¬aΪ³£Êý£©£¬ÇÒÒÑÖªµ±ÏúÊÛ¼Û¸ñΪ3Ôª/¼þʱ£¬¸Ãµç×Ó²úÆ·ÏúÊÛÁ¿Îª89ǧ¼þ£®
£¨¢ñ£©ÇóʵÊýaµÄÖµ¼°Ë«Ê®Ò»ÆÚ¼äÏúÊ۸õç×Ó²úÆ·»ñµÃµÄ×ÜÀûÈóL£¨x£©£»
£¨¢ò£©ÏúÊÛ¼Û¸ñxΪ¶àÉÙʱ£¬Ëù»ñµÃµÄ×ÜÀûÈóL£¨x£©×î´ó£¿²¢Çó³ö×ÜÀûÈóL£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÓÐÒ»¸öµç¶¯Íæ¾ß£¬ËüÓÐÒ»¸ö9¡Á6µÄ³¤·½ÐΣ¨µ¥Î»£ºcm£©ºÍÒ»¸ö°ë¾¶Îª1cmµÄСԲÅÌ£¨ÅÌÖÐÍÞÍÞÁ³£©£¬ËûÃǵÄÁ¬½ÓµãΪA£¬E£¬´ò¿ªµçÔ´£¬Ð¡Ô²ÅÌÑØ×ų¤·½ÐÎÄÚ±Ú£¬´ÓµãA³ö·¢²»Í£µØ¹ö¶¯£¨ÎÞ»¬¶¯£©£¬ÈçͼËùʾ£¬Èô´ËʱijÈËÏò¸Ã³¤·½ÐÎÅÌͶÖÀһö·ÉïÚ£¬ÔòÄÜÉäÖÐСԲÅÌÔËÐÐÇøÓòÄڵĸÅÂÊΪ$\frac{40+¦Ð}{54}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô·½³Ì$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1±íʾ½¹µãÔÚyÖáÉϵÄÍÖÔ²£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®k£¼1»òk£¾9B£®1£¼k£¼9C£®1£¼k£¼9ÇÒk¡Ù5D£®5£¼k£¼9

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸