精英家教网 > 高中数学 > 题目详情
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:
(1)要使工厂有盈利,产品数量x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?
(1)大于300台小于1050台; (2) 600台

试题分析:(1) 由于销售收入是一个关于产品数量x的一个分段函数,另外计算工厂的盈利需要将销售收入r(x)减去总的成本g(x)万元,所以在两段函数中分别求出盈利大于零的时候产品数量的范围,及可求得结论.
(2)通过二次函数的最值的求法即可得到盈利最大值时对应的产品数x的值,本小题单位的转化也是易错点.
试题解析:依题意得,设利润函数为,则
所以 (1)要使工厂有盈利,则有f(x)>0,因为
f(x)>0?

,   即
所以要使工厂盈利,产品数量应控制在大于300台小于1050台的范围内
(2)当时,
故当x=6时,f(x)有最大值4.5.而当x>7时,.
所以当工厂生产600台产品时,盈利最大.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价 (单位:元)与上市时间(单位:天)的数据如下:
上市时间
4
10
36
市场价
90
51
90
(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价与上市时间的变化关系并说明理由:①;②;③
(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2-2017x+8052+|x2-2017x+8052|,则f(1)+f(2)+f(3)+…+f(2013)=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:P=P0e-kt,(k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.
A.小时B.小时C.5小时D.10小时

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设二次函数f(x)=x2+bx+c,满足f(x+3)=f(3-x),则使f(x)>c-8的x的取值范围为(  )
A.(-∞,2)B.(4,+∞)
C.(-∞,2)∪(4,+∞)D.(2,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yf(x),xD,若存在常数C,对任意的x1D,存在唯一的x2D使得C,则称函数f(x)在D上的几何平均数为C.已知f(x)=x3x∈[1,2],则函数f(x)=x3在[1,2]上的几何平均数为(  )
A.B.2
C.4 D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=lg|x|,则函数y=f(x)与y=g(x)的图象在区间[-5,5]内的交点个数为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对a,b∈R,记max{a,b}=函数f(x) =max{|x+1|,|x-2|}(x∈R)的最小值是(  )
A.0B.C.D.3

查看答案和解析>>

同步练习册答案