精英家教网 > 高中数学 > 题目详情
4.已知命题p:“?x0∈{|x|-1<x<1},${x}_{0}^{2}$-x0-m=0(m∈R)”是真命题,设实数m的取值集合为M.
(1)求集合M;
(2)设关于x的不等式(x-a)(x+a-2)<0(a∈R)的解集为N,若“x∈N”是“x∈M”的必要条件,求实数a的取值范围.

分析 (1)若命题p为真命题,利用参数分类法结合一元二次函数的性质求出m的范围即可求集合M;
(2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2-a即a>1时,N={x|2-a<x<a},②当a<2-a即a<1时,N={x|a<x<2-a},③当a=2-a即a=1时,N=∅三种情况进行求解

解答 解:(1)若命题p是真命题,则由${x}_{0}^{2}$-x0-m=0得m=${x}_{0}^{2}$-x0=(x0-$\frac{1}{2}$)2-$\frac{1}{4}$,
∵-1<x0<1,
∴当x0=$\frac{1}{2}$时,函数取得最小值-$\frac{1}{4}$,
当x0=-1时,函数取得最大值2,
则-$\frac{1}{4}$≤m<2,
即集合M=[-$\frac{1}{4}$,0);
(2)若x∈N是x∈M的必要条件,则M⊆N
①当a>2-a即a>1时,N={x|2-a<x<a},则$\left\{\begin{array}{l}{2-a<-\frac{1}{4}}\\{a≥2}\\{a>1}\end{array}\right.$即$a>\frac{9}{4}$
②当a<2-a即a<1时,N={x|a<x<2-a},则$\left\{\begin{array}{l}{a<1}\\{a<-\frac{1}{4}}\\{2-a≥2}\end{array}\right.$即$a<-\frac{1}{4}$
③当a=2-a即a=1时,N=∅,此时不满足条件
综上可得$a>\frac{9}{4}或a<-\frac{1}{4}$

点评 本题主要考查了二次函数在闭区间上的值域的求解,集合之间包含关系的应用,体现了分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1+i}$,则|z|等于(  )
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x+$\frac{1}{{e}^{-x}}$,若直线:y=kx与曲线y=f(x)相切,则k=1+e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,O为坐标原点,若线段OA的中垂线与直线y=x的交点P恰在椭圆C上,且△OAP的面积为3.
(1)求椭圆C的方程;
(2)设直线1:y=kx+m与椭圆C交于M、N两点,点B为椭圆C的上顶点,若△BMN是以MN为底边的等腰三角形,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn是等比数列{an}的前n项的和,Sm-1=45,Sm=93,则Sm+1=189,则m=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知动点P(x,y)与定点F(1,0)满足条件:以PF为直径的圆恒与纵轴相切.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上的两点,已知点M(-1,m)满足MA⊥MB,求△MAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z满足z(1+2i)=5i(i为虚数单位).
(1)求复数z,以及复数z的实部与虚部;
(2)求复数$\overline{z}$+$\frac{5}{z}$的模.

查看答案和解析>>

同步练习册答案