精英家教网 > 高中数学 > 题目详情

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

 
喜欢
不喜欢
合计
大于40岁
20
5
25
20岁至40岁
10
20
30
合计
30
25
55
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

(1)有的把握认为喜欢“人文景观”景点与年龄有关;(2).

解析试题分析:本题主要考查独立性检验、分层抽样、随机事件的概率等基础知识,同时考查分析数据的能力、分析问题解决问题的能力和计算求解能力.第一问,由已知表格读出a,b,c,d,n,利用已知的公式先求出的值,与临界值表进行对比,找到相关的概率值;第二问,利用分层抽样的公式“样本容量÷总容量”求出大于40岁和20岁至40岁所抽取的人数,并用字母表示,写出在6人中选2人的所以情况,在其中找出符合题意的情况,用这2个种数求概率.
试题解析:(1)由公式
所以有的把握认为喜欢“人文景观”景点与年龄有关                        5分
(2)设所抽样本中有个“大于40岁”市民,则,得
所以样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,分别记作,从中任选2人的基本事件有
共15个                         9分
其中恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的事件有共8个
所以恰有1名“大于40岁”和1名“20岁至40岁”之间的市民的概率为    12分
考点:1.分层抽样;2.独立性检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图,如图

(1)求的值;
(2)根据样本数据,试估计盒子中小球重量的平均值;
(注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.)
(3)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种方法?
(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.

(1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个?
(2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度

 

应该取消
应该保留
无所谓
在校学生
2100人
120人
y
社会人士
600人
x
z
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.

(1)在上面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
级 别


1
2
1
2

状 况


轻微
污染
轻度
污染
中度
污染
中度
重污染
重度
污染
 





对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.

(1)求直方图中x的值.
(2)计算一年中空气质量分别为良和轻微污染的天数.
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设三组实验数据(x1,y1),(x2,y2),(x3,y3)的回归直线方程是:=x+,使代数式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小时,=-,=(,分别是这三组数据的横、纵坐标的平均数),
若有7组数据列表如下:

x
2
3
4
5
6
7
8
y
4
6
5
6.2
8
7.1
8.6
(1)求上表中前3组数据的回归直线方程.
(2)若|yi-(xi+)|≤0.2,即称(xi,yi)为(1)中回归直线的拟合“好点”,求后4组数据中拟合“好点”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,
8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段,从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制直方图如图所示.

(1)这20个路段轻度拥堵、中度拥堵的路段各有多少个?
(2)从这20个路段中随机抽出的3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.

查看答案和解析>>

同步练习册答案