有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?
(1)甲不在中间也不在两端;
(2)甲、乙两人必须排在两端;
(3)男、女生分别排在一起;
(4)男女相间;
(5)甲、乙、丙三人从左到右顺序保持一定.
(1)241920种排法.(2)10080种排法.(3)种
(4)2880种 (5)种.
【解析】本题集排列多种类型于一题,充分体现了元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法(排除法)、捆绑法、等机会法、插空法等常见的解题思路
(1)这是一个排列问题,一般情况下,我们会从受到限制的特殊元素开始考虑,先排甲有6种,剩下的8个元素全排列有A88种,根据分步计数原理得到结果.
(2)先排甲、乙,再排其余7人,再根据分步计数原理得到结果.
(3)把男生和女生分别看成一个元素,两个元素进行排列,男生和女生内部还有一个全排列,
(4)先排4名男生有A44种方法,再将5名女生插在男生形成的5个空上有A55种方法,根据分步计数原理得到结果.
(5)9人共有A99种排法,其中甲、乙、丙三人有A33种排法,因而在A99种排法中每A33种对应一种符合条件的排法,类似于平均分组.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
A.40 B.45 C.105 D.110
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com