精英家教网 > 高中数学 > 题目详情
9.计算lg0.014=-8.

分析 利用指数与对数的运算性质即可得出.

解答 解:原式=lg10-8=-8,
故答案为:-8.

点评 本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知F2为椭圆mx2+y2=4m(0<m<1)的右焦点,点A(0,2),点P为椭圆上任意一点,且|PA|-|PF2|的最小值为$-\frac{4}{3}$,则m=$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若${(1-\sqrt{2})^5}$=a+b$\sqrt{2}$(a,b为有理数),则a+b=(  )
A.32B.12C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=$\sqrt{3}$,SE⊥AD.
(I)证明:BE⊥SC
(II)(文)若SE=1,求点E到平面SBC的距离.
(理)若SE=1,求二面角B-SC-D平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个算法的程序框图,当输入的x值为1时,输出y的结果恰好是$\frac{1}{2}$,则空白框处所填关系式可以是(  )
A.y=x2B.y=$\frac{1}{x}$C.y=2xD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知tanα=$\frac{1}{7}$,sinβ=$\frac{{\sqrt{10}}}{10}$,α,β∈(0,$\frac{π}{2}$),求α+2β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示的五面体ABCDFE中,四边形ABCD是矩形,AB∥EF,AD⊥平面ABEF,且AD=1,AB=$\frac{1}{2}$EF=2$\sqrt{2}$,AF=BE=2,P、Q分别为AE、BD的中点.
(Ⅰ) 求证:PQ∥平面BCE;
(Ⅱ) 求二面角A-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在(-1,1)上的函数f(x)满足:当x,y∈(-1,1)时,f(x)-f(y)=f($\frac{x-y}{1-xy}$),并且当x∈(-1,0)时,f(x)>0;若P=f($\frac{1}{3}$)+f($\frac{1}{4}$),Q=f($\frac{1}{2}$),R=f(0),则P、Q、R的大小关系为R>Q>P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的首项为a1=$\frac{1}{2}$,且2an+1=an(n∈N+).
(1)求{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{n}{{a}_{n}}$,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案