精英家教网 > 高中数学 > 题目详情

【题目】已知点和椭圆. 直线与椭圆交于不同的两点.

(Ⅰ) 求椭圆的离心率;

(Ⅱ) 当时,求的面积;

(Ⅲ)设直线与椭圆的另一个交点为,当中点时,求的值 .

【答案】(Ⅰ)(Ⅱ)4(Ⅲ)

【解析】

(Ⅰ)利用已知条件求出ac,然后求解椭圆的离心率即可

(Ⅱ)设Px1y1),Qx2y2),直线l的方程为,与椭圆联立,求出坐标,然后求解三角形的面积

(Ⅲ)法一:设点Cx3y3),Px1y1),B(0,﹣2),结合椭圆方程求出Px1y1),然后求解斜率.

法二:设Cx3y3),显然直线PB有斜率,设直线PB的方程为yk1x﹣2,与椭圆联立,利用韦达定理求出P的坐标,求解斜率即可.

(Ⅰ)因为,所以

所以离心率

(Ⅱ)设

,则直线的方程为

,得

解得

,则

(Ⅲ)法一:

设点

因为,所以

又点都在椭圆上,

所以

解得

所以

法二:

显然直线有斜率,设直线的方程为

, 得

所以

解得

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线,点,点是平面直角坐标系内的动点,且点到直线的距离是点到点的距离的2.记动点的轨迹为曲线.

1)求曲线的方程;

2)过点的直线与曲线交于两点,若是坐标系原点)的面积为,求直线的方程;

3)若(2)中过点的直线是倾斜角不为0的任意直线,仍记与曲线的交点为,设点为线段的中点,直线与直线交于点,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶7元,未售出的酸奶降价处理,以每瓶1.5元的价格当天全部处理完.据往年销售经验,每天需求量与当天最高气温(单位:)有关,如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:

最高气温

天数

2

14

34

27

9

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

2)设六月份一天销售这种酸奶的利润为(单位:元),若该超市在六月份每天的进货量均为450瓶,写出的所有可能值,并估计大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数.

1)当时,求不等式的解集;

2)若不等式的解集为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当,求的单调区间;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,得到的如下的频率分布表:

组号

分数区间

频数

频率

1

70

0.35

2

10

0.05

3

0.20

4

60

0.30

5

20

1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图;

2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样抽取6名学生进入第二轮面试,求第345组各组抽取多少名学生进入第二轮面试;

3)在(2)的前提下,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为,第2组成绩为,第3组成绩为,第4组成绩为,第5组成绩为,样本频率分布直方图如下:

1)估计全体考生成绩的中位数;

2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直角中,为直角,分别为的中点,将沿折起,使点到达点的位置,连接的中点.

(Ⅰ)证明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

查看答案和解析>>

同步练习册答案