精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的图象是由函数的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2(横坐标不变),再将所得到的图象向右平移个单位长度.

1)求函数f(x)的解析式,并求其图象的对称轴方程;

2)已知关于x的方程f(x)+g(x)=m内有两个不同的解.

①求实数m的取值范围;

②证明:.

【答案】1,对称轴方程为:;(2,证明见解析

【解析】

1)根据三角函数平移伸缩变换法则直接得到解析式,再求对称轴得到答案.

2)计算,计算得到答案;画出图像,讨论两种情况,计算,计算得到证明.

1)三角函数平移伸缩变换法则:

对称轴满足:,故对称轴方程为:.

2)①,故.

其中,在内有两个不同的解,故,故.

,如图所示:

时,

时,

.

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为,其短半轴长为.

(1)求椭圆的方程;

(2)设不经过点的直线与椭圆相交于两点.若直线的斜率之和为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加夏令营的400名学生编号为:001,002,…,400,采用系统抽样的方法抽取一个容量为40的样本,且随机抽得的号码为003,这400名学生分住在三个营区,从001到180在第一营区,从181到295在第二营区,从296到400在第三营区,三个营区被抽中的人数分别为( )

A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,过右焦点作直线交椭圆两点,的周长为,点.

1)求椭圆的方程;

2)设直线的斜率,请问是否为定值?若是定值,求出其定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为3的正的各边三等分,过每个分点分别作另外两边的平行线,称的边及这些平行线所交的10个点为格点.若在这10个格点中任取个格点,一定存在三个格点能构成一个等腰三角形(包括正三角形).的最小值.

查看答案和解析>>

同步练习册答案