精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=ax-\frac{1}{x}-(a+1)lnx,a∈R$.
(I)求函数f(x)在$x=\frac{1}{2}$处的切线方程为4x-y+m=0时,此时函数f(x)的单调区间;
(Ⅱ)若$a>\frac{1}{e}$,判断函数g(x)=x[f(x)+a+1]的零点的个数.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)求出g'(x)=2ax-(a+1)lnx,设m(x)=2ax-(a+1)lnx,根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)${f^′}(x)=a+\frac{1}{x^2}-\frac{a+1}{x}$,${f^′}({\frac{1}{2}})=4$,
所以a=-2,则$f(x)=-2x-\frac{1}{x}+lnx$,x∈(0,+∞),$f'(x)=\frac{-(2x+1)(x-1)}{x^2}$,
由f'(x)>0得,0<x<1;由f'(x)<0得,x>1;
所以函数f(x)的单调增区间为(0,1);单调减区间为(1,+∞).
(Ⅱ)x∈(0,+∞),g(x)=ax2-(a+1)xlnx+(a+1)x-1.
所以g'(x)=2ax-(a+1)lnx
设m(x)=2ax-(a+1)lnx,$m'(x)=2a-\frac{a+1}{x}=\frac{2ax-(a+1)}{x}$.
令m'(x)=0得 $x=\frac{a+1}{2a}$,当$0<x<\frac{a+1}{2a}$时,m'(x)<0;当$x>\frac{a+1}{2a}$时,m'(x)>0.
所以g'(x)在$(0,\frac{a+1}{2a})$上单调递减,在$(\frac{a+1}{2a},+∞)$上单调递增.
所以g'(x)的最小值为$g'(\frac{a+1}{2a})=(a+1)(1-ln\frac{a+1}{2a})$.
因为$a>\frac{1}{e}$,所以$\frac{a+1}{2a}=\frac{1}{2}+\frac{1}{2a}<\frac{1}{2}+\frac{e}{2}<e$.
所以g'(x)的最小值$g'(\frac{a+1}{2a})=(a+1)(1-ln\frac{a+1}{2a})>0$.
从而,g(x)在区间(0,+∞)上单调递增.
又$g(\frac{1}{{{e^5}{a^2}}})=\frac{1}{{{e^{10}}{a^3}}}+\frac{a+1}{{{e^5}{a^2}}}(6+2lna)-1$,
设h(a)=e3a-(2lna+6).则$h'(a)={e^3}-\frac{2}{a}$.令h'(a)=0得$a=\frac{2}{e^3}$.
由h'(a)<0,得$0<a<\frac{2}{e^3}$;由h'(a)>0,得$a>\frac{2}{e^3}$.
所以h(a)在$(0,\frac{2}{e^3})$上单调递减,在$(\frac{2}{e^3},+∞)$上单调递增.
所以$h{(a)_{min}}=h(\frac{2}{e^3})=2-2ln2>0$.所以h(a)>0恒成立.
所以e3a>2lna+6,$\frac{2lna+6}{{{e^3}a}}<1$.
所以$g(\frac{1}{{{e^5}{a^2}}})<\frac{1}{e^7}+\frac{a+1}{{{e^2}a}}-1=\frac{1}{e^7}+\frac{1}{e^2}+\frac{1}{{{e^2}a}}-1<\frac{1}{e^7}+\frac{1}{e^2}+\frac{1}{e}-1<0$.
又g(1)=2a>0,所以当$a>\frac{1}{e}$时,函数g(x)恰有1个零点.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若f(x)是定义在(0,+∞)上的增函数,且对于任意x>0满足f ($\frac{x}{y}$)=f(x)-f (y).
(1)求f(1)的值;
(2)若f(6)=1,试求解不等式f(x+5)-f ($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设U={不大于10的正整数},A={10以内的质数},B={1,3,5,7,9},则∁UA∩∁UB是(  )
A.{2,4,6,8,9}B.{2,4,6,8,9,10}C.{1,2,6,8,9,10}D.{4,6,8,10}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\frac{{1+{i^{2017}}}}{1-i}$=i(i是虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中错误的是(  )
A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.命题“角α的终边在第一象限,则α是锐角”的逆命题为真命题
C.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
D.命题“若x>y,则x>|y|”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)是奇函数,当x>0时,f(x)=x|x-2|.
(1)求f(-3);
(2)求当x<0时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列各图中,两个变量具有线性相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-1}$+lg(2-x)的定义域是(  )
A.(-∞,1]∪(2,+∞)B.(1,2)C.[1,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.976,则P(-1<ξ<3)=(  )
A.0.952B.0.942C.0.954D.0.960

查看答案和解析>>

同步练习册答案