分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)求出g'(x)=2ax-(a+1)lnx,设m(x)=2ax-(a+1)lnx,根据函数的单调性求出a的范围即可.
解答 解:(Ⅰ)${f^′}(x)=a+\frac{1}{x^2}-\frac{a+1}{x}$,${f^′}({\frac{1}{2}})=4$,
所以a=-2,则$f(x)=-2x-\frac{1}{x}+lnx$,x∈(0,+∞),$f'(x)=\frac{-(2x+1)(x-1)}{x^2}$,
由f'(x)>0得,0<x<1;由f'(x)<0得,x>1;
所以函数f(x)的单调增区间为(0,1);单调减区间为(1,+∞).
(Ⅱ)x∈(0,+∞),g(x)=ax2-(a+1)xlnx+(a+1)x-1.
所以g'(x)=2ax-(a+1)lnx
设m(x)=2ax-(a+1)lnx,$m'(x)=2a-\frac{a+1}{x}=\frac{2ax-(a+1)}{x}$.
令m'(x)=0得 $x=\frac{a+1}{2a}$,当$0<x<\frac{a+1}{2a}$时,m'(x)<0;当$x>\frac{a+1}{2a}$时,m'(x)>0.
所以g'(x)在$(0,\frac{a+1}{2a})$上单调递减,在$(\frac{a+1}{2a},+∞)$上单调递增.
所以g'(x)的最小值为$g'(\frac{a+1}{2a})=(a+1)(1-ln\frac{a+1}{2a})$.
因为$a>\frac{1}{e}$,所以$\frac{a+1}{2a}=\frac{1}{2}+\frac{1}{2a}<\frac{1}{2}+\frac{e}{2}<e$.
所以g'(x)的最小值$g'(\frac{a+1}{2a})=(a+1)(1-ln\frac{a+1}{2a})>0$.
从而,g(x)在区间(0,+∞)上单调递增.
又$g(\frac{1}{{{e^5}{a^2}}})=\frac{1}{{{e^{10}}{a^3}}}+\frac{a+1}{{{e^5}{a^2}}}(6+2lna)-1$,
设h(a)=e3a-(2lna+6).则$h'(a)={e^3}-\frac{2}{a}$.令h'(a)=0得$a=\frac{2}{e^3}$.
由h'(a)<0,得$0<a<\frac{2}{e^3}$;由h'(a)>0,得$a>\frac{2}{e^3}$.
所以h(a)在$(0,\frac{2}{e^3})$上单调递减,在$(\frac{2}{e^3},+∞)$上单调递增.
所以$h{(a)_{min}}=h(\frac{2}{e^3})=2-2ln2>0$.所以h(a)>0恒成立.
所以e3a>2lna+6,$\frac{2lna+6}{{{e^3}a}}<1$.
所以$g(\frac{1}{{{e^5}{a^2}}})<\frac{1}{e^7}+\frac{a+1}{{{e^2}a}}-1=\frac{1}{e^7}+\frac{1}{e^2}+\frac{1}{{{e^2}a}}-1<\frac{1}{e^7}+\frac{1}{e^2}+\frac{1}{e}-1<0$.
又g(1)=2a>0,所以当$a>\frac{1}{e}$时,函数g(x)恰有1个零点.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2,4,6,8,9} | B. | {2,4,6,8,9,10} | C. | {1,2,6,8,9,10} | D. | {4,6,8,10} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0” | |
B. | 命题“角α的终边在第一象限,则α是锐角”的逆命题为真命题 | |
C. | 已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假 | |
D. | 命题“若x>y,则x>|y|”的逆命题是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1]∪(2,+∞) | B. | (1,2) | C. | [1,2) | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.952 | B. | 0.942 | C. | 0.954 | D. | 0.960 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com