精英家教网 > 高中数学 > 题目详情

【题目】某市有48 000名学生,一次考试后数学成绩服从正态分布,平均分为80,标准差为10,从理论上讲,80分到90分之间有____.

【答案】16382

【解析】

正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.

数学成绩近似地服从正态分布N(80,102),

P(|x﹣u|<σ)=0.6826,

∴P(|x﹣80|<10)=0.6826,

根据正态曲线的对称性知:

位于80分到90分之间的概率是位于70分到90分之间的概率的一半

理论上说在80分到90分的人数是 (0.6826)×48000≈16382.

故答案为:16382

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①函数y= 为奇函数;
②y=2 的值域是(1,+∞)
③函数y= 在定义域内是减函数;
④若函数f(2x)的定义域为[1,2],则函数y=f( )定义域为[4,8]
其中正确命题的序号是 . (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an}、{bn},Sn为数列{an}的前n项和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6男4女站成一排,求满足下列条件的排法共有多少种.(列出算式即可)

(1)任何2名女生都不相邻,有多少种排法?

(2)男甲不在首位,男乙不在末位,有多少种排法?

(3)男生甲、乙、丙顺序一定,有多少种排法?

(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC内角A,B,C的对边,且ccosA﹣acosC= b.
(1)其 的值;
(2)若tanA,tanB,tanC成等差数列,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 ,当t=﹣1时,对应曲线C1上一点A,且点A关于原点的对称点为B.以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
(1)求A,B两点的极坐标;
(2)设P为曲线C2上的动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=﹣f(2a﹣x),则称f(x)为“准奇函数”.给定下列函数:①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“准奇函数”是(写出所有“准奇函数”的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左右焦点分别为F1 , F2 , 离心率为 ,以原点为圆心,以椭圆C的短半轴长为半径的圆与直线x﹣y+ =0相切,过点F2的直线l与椭圆C相交于M,N两点.
(1)求椭圆C的方程;
(2)若 =3 ,求直线l的方程;
(3)求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜

1的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)

2根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案