精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-e2
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

分析 (1)g(x)-f(x)>x2+x+e-ex等价于ex+lnx-e>0,令h(x)=ex+lnx-e,则$h'(x)={e^x}+\frac{1}{x}>0$,可知函数h(x)在(1,+∞)上单调递增,即可证明结论;
(2)不等式2f(x)>3x2+a等价于(2x2-4ax)lnx+x2-a>0,构造函数,先求出a的范围,再验证即可.

解答 (1)证明:当a=1,b=-1时,f(x)=(x2-2x)lnx-x2
所以g(x)-f(x)>x2+x+e-ex等价于ex+lnx-e>0,
令h(x)=ex+lnx-e,则$h'(x)={e^x}+\frac{1}{x}>0$,可知函数h(x)在(1,+∞)上单调递增,
所以h(x)>h(1),即ex+lnx>e,亦即ex+lnx-e>0;
(2)解:当b=2时,f(x)=(x2-2ax) lnx+2x2,a∈R,
所以不等式2f(x)>3x2+a等价于(2x2-4ax)lnx+x2-a>0,
令p(x)=(2x2-4ax)lnx+x2-a,x∈[1,+∞),
则p(x)=(2x2-4ax)lnx+x2-a>0在[1,+∞)上恒成立,所以p(1)=1-a>0,所以a<1,
又p(x)=(4x-4a)lnx+(2x-4a)+2x=4(x-a)(lnx+1)(x≥1),
显然当a<1时,p(x)>0,则函数p(x)在[1,+∞)上单调递增,
所以p(x)min=p(1)=1-a>0,所以a<1,
综上可知a的取值范围为(-∞,1).

点评 本题考查了导数知识的综合运用,考查函数的最值的问题,以及参数的取值范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,若AB:BF=5:3,则椭圆的离心率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{5}{3}$,3an+1-2an=2n+5.
(1)求证:数列{an-2n+1}为等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,$\sqrt{2}$),且离心率等于$\frac{{\sqrt{3}}}{2}$,过点M(0,2)的直线l与椭圆相交于不同两点P,Q,点N在线段PQ上.
(1)求椭圆的标准方程;
(2)设$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}=λ$,若直线l与y轴不重合,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x∈R,$\sqrt{y}$有意义且满足x2+y2-4x+1=0,则$\frac{y}{x}$的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱台ABC-A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C-MC1-N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow{e_1},\overrightarrow{e_2}$为单位向量,且$\overrightarrow{e_1}$与$\overrightarrow{e_1}+2\overrightarrow{e_2}$垂直,则$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的偶函数f(x)在(-∞,0]单调递减,且f(-$\frac{1}{3}$)=0,则满足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范围是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.掷一枚均匀的正六面体骰子,设A表示事件“出现3点”,B表示事件“出现偶数点”,则P(A∪B)等于$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案