精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①已知到直线的距离为1;
②若f'(x)=0,则函数y=f(x)在x=x取得极值;
③m≥-1,则函数的值域为R;
④在极坐标系中,点到直线的距离是2.
其中真命题是    (把你认为正确的命题序号都填在横线上)
【答案】分析:①先利用微积分基本定理求定积分的值,得a值,再利用点到直线的距离公式计算距离即可判断;②举反例即可判断其为假命题;③当对数函数的真数能取遍一切正数时,其值域为R,据此即可判断;④先将极坐标化为直角坐标,将极坐标方程化为直角坐标方程,再利用点到直线的距离公式即可作出判断
解答:解:①∵a=∫πsinxdx,a=∫πsinxdx=-cosx|π=-cosπ+cos0=2
到直线的距离为d==1,故①为真命题
②例如f(x)=x3,f′(0)=0,但在x=0不取极值,故②为假命题
③若m≥-1,则二次函数y=x2-2x-m的判别式△=4+4m≥0,其函数值可取遍一切正数,故函数的值域为R,③为真命题
④将极坐标化为直角坐标,即点P(2cos,2sin),即P(1,),直线即ρsinθcos-ρcosθsin=3化为直角坐标方程为y-x=3
∴点P(1,)到直线y-x=3的距离为d==2,故④为真命题
故答案为①③④
点评:本题综合考察了定积分的求法,点到直线的距离公式,函数极值的意义,对数函数的值域,极坐标与直角坐标的互化等基础知识
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案