精英家教网 > 高中数学 > 题目详情

已知数列{an}满足a1=1,a2=2,且当n>1时,2an=an-1+an+1恒成立.
(1)求{an}的通项公式;
(2)设Sn=a1+a2+…+an,求和数学公式

解:(1)∵当n>1时,2an=an-1+an+1,且a1=1,a2=2,
∴an+1-an=an-an-1=an-1-an-2=…=a2-a1=2-1=1,
∴数列{an}是以1为首项,1为公差的等差数列,
∴an=n;
(2)∵Sn=1+2+3+…+n=
==2(-),
++…+
=++…+
=2(1-+-+…+-
=2(1-).
分析:(1)将已知的等式左边写为两项之和an+an,移项后,利用此递推式列出等式,将已知的a1=1,a2=2代入,可得出相邻两项之差为定值,进而确定出数列{an}是以1为首项,1为公差的等差数列,由首项和公差即可写出等差数列的通项公式;
(2)由(1)得出的等差数列的通项公式列举出数列的各项之和,并利用等差数列的前n项和公式化简,得出Sn的通项,代入中,利用拆项法变形,列举出所求式子的各项,抵消合并后即可得到所求式子的结果.
点评:此题考查了等差数列的性质,等差数列的求和公式,等差数列的确定,以及等差数列的通项公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案