精英家教网 > 高中数学 > 题目详情
4.对于正整数k,记g(k)表示k的最大奇数因数.例如:g(1)=1,g(2)=1,g(10)=5.设Sn=g(1)+g(2)+g(3)+…+g(2n
给出下列四个结论:
①g(3)+g(4)=10
②?m∈N*,都有g(2m)=g(m)
③S1+S2+S3=30
④Sn-Sn-1=4n-1,n≥2,n∈N*
则以上结论正确有②③④.(填写所有正确结论的序号)

分析 根据已知中g(k)表示k的最大奇数因数,Sn=g(1)+g(2)+g(3)+…+g(2n).逐一分析四个结论的真假,可得答案

解答 解:∵g(k)表示k的最大奇数因数,Sn=g(1)+g(2)+g(3)+…+g(2n).
∴①g(3)+g(4)=3+1=4≠10,故错误;
②?m∈N*,都有g(2m)=g(m),故正确;
③S1+S2+S3=(1+1)+(1+1+3+1)+(1+1+3+1+5+3+7+1)=30,故正确;
④当n≥2时,Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2×2n-1)]
=$\frac{(1+{2}^{n}-1)×{2}^{n-1}}{2}$+[g(1)+g(2)+…+g(2n-1)]=4n-1+Sn-1
于是Sn-Sn-1=4n-1,n≥2,n∈N*.故正确;
故答案为:②③④.

点评 本题考查新定义,考查数列的求和,解题的关键是正确理解新定义,正确求数列的和是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求此椭圆的标准方程;
(2)已知任一椭圆在其上面的点(x0,y0)处的切线方程均可写为$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{{b}^{2}}$=1,设P是圆x2+y2=16上任意一点,过P作椭圆C的切线PA,PB,切点分别为A,B,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知复数z满足(3+4i)z=5i2016(i为虚数单位),则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正△ABC的边长为a,那么的平面直观图△A'B'C'的面积为$\frac{{\sqrt{6}}}{16}{a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知函数f(x)=log2(-x2+2x+3)的定义域为A,函数g(x)=$\frac{1}{x}$,x∈(-3,0)∪(0,1)的值域为B,不等式2x2+mx-8<0的解集为C
(1)求A∪(∁RB)、A∩B
(2)若同时满足A,B的x值也满足C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,且集合$M=\left\{{z|z={{({\frac{i-1}{i+1}})}^n},n∈{N^*}}\right\}$,则集合M的非空子集的个数为(  )
A.16B.15C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是(  )
A.有两个内角是钝角B.有三个内角是钝角
C.至少有两个内角是钝角D.没有一个内角是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.412°角的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC在斜二测画法下的平面直观图△A'B'C',△A'B'C'是边长为a的正三角形,那么在原△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{2}{a^2}$B.$\frac{{\sqrt{3}}}{4}{a^2}$C.$\frac{{\sqrt{6}}}{2}{a^2}$D.$\sqrt{6}{a^2}$

查看答案和解析>>

同步练习册答案