【题目】嫦娥四号任务经过探月工程重大专项领导小组审议,通过并且正式开始实施,如图所示.假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点变轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行.若用和分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列关系中正确的是( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系中,已知正四棱锥P-ABCD的所有棱长均为6,正方形ABCD的中心为坐标原点O,AD,BC平行于x轴,AB、CD平行于y轴,顶点P在z轴的正半轴上,点M、N分别在PA,BD上,且.
(1)若,求直线MN与PC所成角的大小;
(2)若二面角A-PN-D的平面角的余弦值为,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,武汉发生了新冠肺炎疫情,2020年初开始蔓延.党中央国务院面对“突发灾难”果断采取措施,举国上下,万众一心支援武汉,全国各地医疗队陆续增援湖北,纷纷投身疫情防控与救治病人之中.为了分担“抗疫英雄”的后顾之忧,某校教师志愿者开展“爱心辅导”活动,为抗疫前线医务工作者子女开展在线辅导.春节期间随机安排甲乙两位志愿者为一位初中生辅导功课共3次,每位志愿者至少辅导1次,每一次只有1位志愿者辅导,到甲恰好辅导两次的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,求;
(3)设,问:是否存在非零整数,使数列为递增数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取人参加学校座谈交流,那么从得分在区间与各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的人中,选出人参加全市座谈交流,设表示得分在区间中参加全市座谈交流的人数,求的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求曲线的参数方程与直线的普通方程;
(2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称f(x)为“柯西函数”,则下列函数:
①f(x)=x(x>0);
②f(x)=lnx(0<x<3);
③f(x)=cosx;
④f(x)=x2﹣1.
其中为“柯西函数”的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,且抛物线在点处的切线斜率为,直线与抛物线交于两点(点在点左侧),且直线垂直于直线.
(1)求证:直线过定点,并求出定点坐标;
(2)如图,直线交轴于点,直线交轴于点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com