精英家教网 > 高中数学 > 题目详情
若椭圆的左、右焦点分别为,线段被抛物线的焦点F分成5:3两段,则椭圆的离心率为 (   )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆,a,b为常数),动圆。点分别为的左,右顶点,相交于A,B,C,D四点。
(1)求直线与直线交点M的轨迹方程;
(2)设动圆相交于四点,其中。若矩形与矩形的面积相等,证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的离心率,则的值为 (       ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为椭圆的左、右顶点,若在椭圆上存在异于的点,使得,其中为坐标原点,则椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,点上两点,斜率为的直线与椭圆交于点在直线两侧).

(I)求四边形面积的最大值;
(II)设直线的斜率为,试判断是否为定值.若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分14分)
已知圆M定点,点为圆上的动点,点上,点上,且满足
(Ⅰ) 求点G的轨迹C的方程;
(Ⅱ) 过点(2,0)作直线l,与曲线C交于A,B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的长轴两端点为,若椭圆上存在点,使得,求椭圆的离心率的取值范围____________;
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的点到左焦点的距离大于它到右准线的距离,则椭圆离心率e的取值范围是           .

查看答案和解析>>

同步练习册答案