精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC中,AC=2,A=120°,
(Ⅰ)求边AB的长;
(Ⅱ)设(3,4)是BC边上一点,且△ACD的面积为 ,求∠ADC的正弦值.

【答案】解:(Ⅰ)因为A=120°,所以C=60°﹣B,由

= = .…

,从而 ,…

又0°<B<60°,所以B=30°,C=60°﹣B=30°,所以AB=AC=2.…

(Ⅱ)由已知得 ,所以 .…

在△ACD中,由余弦定理得AD2=AC2+CD2﹣2AC ,…

再由正弦定理得 ,故


【解析】(1)由三角形内角和为180°,表示出C,由c o s B = s i n C,进行简单的三角恒等变换,综合分析可得出AB=AC=2,(2)根据解三角形中的面积公式得到CD的长度,结合正弦定理、余弦定理可得∠ADC的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 ,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右顶点为 ,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过右焦点F且斜率不为0的动直线l与椭圆交于M,N两点,过M作直线x=a2的垂线,垂足为M1 , 求证:直线M1N过定点,并求出定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中点,则异面直线CB1与C1M所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公比不为1的等比数列{an}的前n项和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(﹣1)nlog2an , 求数列{bn}的前2017项和T2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.
(Ⅰ)求圆C的参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边 ,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).

(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当 时,记四面体C1﹣BEC的体积为V1 , 四面体D﹣BEC的体积为V2 , 求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点A(0,1),B(2,﹣1),点C在双曲线M: ﹣y2=1上,则使△ABC的面积为3的点C的个数为(  )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足 .已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完.
(1)将2017年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

同步练习册答案