在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).
图①
图②
(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;
(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;
(3)求证:AD⊥B′E.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.
(1)求证:平面;
(2)求证:平面;
(3)设,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..
(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知多面体中, 四边形为矩形,,,平面平面, 、分别为、的中点,且,.
(1)求证:平面;
(2)求证:平面;
(3)设平面将几何体分成的两个锥体的体积分别为,,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)求四面体B1C1CD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com