精英家教网 > 高中数学 > 题目详情
15.已知正实数x+y满足logax+logay=c,其中a>1,c∈R.
(1)若a=c=2,则x+y的最小值为4;
(2)若c=3时,对任意的x∈[a,2a],都有y∈[a,a2]使得上述方程成立,则a的取值范围是[2,+∞).

分析 (1)根据对数的运算法则进行化简,结合基本不等式进行求解即可,
(2)先由方程logax+logay=3解出y,转化为函数的值域问题求解.

解答 解:(1)∵logax+logay=c,其中a>1,c∈R.
∴loga(xy)=c,且x>0,y>0
则xy=ac
若a=c=2,
则xy=22=4,
则x+y$≥2\sqrt{xy}$=2$\sqrt{4}$=4,
当且仅当x=4=2时取等号,
故最小值为4.
(2)若c=3,
则xy=a3,即$y=\frac{a^3}{x}$,
则函数在[a,2a]上单调递减,
若任意的x∈[a,2a],都有y∈[a,a2]使得上述方程成立,
∴$y∈[\frac{a^2}{2},{a^2}]$,
故$\frac{{a}^{2}}{2}≥a$,
解得a≥2
故答案为(1)4;(2)[2,+∞)

点评 本题考查对数式的运算、反比例函数的值域、集合的关系等问题,注意函数和方程思想的应用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知($\root{3}{x}$+x22n的展开式的系数和比(3x-1)n的展开式的系数和大992,求(2x-$\frac{1}{x}$)2n的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知点A(1,2),B(3,1),求线段AB的垂直平分线的方程
(2)求经过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“m=1”是“?x∈(0,+∞),m≤x+$\frac{1}{x}$-1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=-4,据此模型预测零售价为15元时,每天的销售量为49
x16171819
y50344131

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求|3$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若α与β为△ABC的内角,则“α=β”是“sinα=sinβ”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,点B在以PA为直径的圆周上,点C在线段AB上,已知PA=5,PB=3,PC=$\frac{15\sqrt{2}}{7}$,设∠APB=α,∠APC=β,α,β均为锐角,则角β的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案