精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
1-mxx-1
(a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数r与a的值.
分析:(1)由已知条件得f(-x)+f(x)=0对定义域中的x均成立,化简即m2x2-1=x2-1对定义域中的x均成立,解出m,并代入题目进行检验.
(2)将对数的真数进行常数分离,先判断真数的单调性,再根据底数的范围确定整个对数式得单调性.
(3)由题意知,(r,a-2)是定义域(-∞,-1)∪(1,+∞)的子集,再分(r,a-2)?(-∞,-1)、
(r,a-2)?(1,+∞)两种情况,分别根据函数的单调性和值域,求得实数r与a的值.
解答:解:(1)由已知条件得f(-x)+f(x)=0对定义域中的x均成立.
所以loga
mx+1
-x-1
+loga
1-mx
x-1
=0
,即
mx+1
-x-1
1-mx
x-1
=1

即m2x2-1=x2-1对定义域中的x均成立.
所以m2=1,即m=1(舍去)或m=-1.
(2)由(1)得f(x)=loga
1+x
x-1

t=
x+1
x-1
=
x-1+2
x-1
=1+
2
x-1

当x1>x2>1时,t1-t2=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
,所以t1<t2
当a>1时,logat1<logat2,即f(x1)<f(x2).所以当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数.
(3)因为函数f(x)的定义域为(-∞,-1)∪(1,+∞),
所以①:r<a-2<-1,0<a<1.
所以f(x)在(r,a-2)为增函数,要使值域为(1,+∞),则
loga
1+r
r-1
=1
a-2=-1
(无解)
②:1<r<a-2,所以a>3.所以f(x)在(r,a-2)为减函数,要使f(x)的值域为(1,+∞),
r=1
loga
a-1
a-3
=1
,所以a=2+
3
,r=1.
点评:本题考查函数的奇偶性、单调性及函数的特殊点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案