精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知a1=2,S4=26.
(1)求数列{an}的通项公式;
(2)设Pn=a1+a4+…+a3n-2,Qn=a10+a12+…+a2n+8,试比较Pn与Qn的大小关系,并说明理由.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用等差数列的通项公式与前n项和公式即可得出.
(2)由数列{a3n-2}是首项为2,公差为3d=9的等差数列,利用等差数列的前n项和公式可得Pn=
9
2
n2-
5
2
n
.由于数列{a2n+8}是首项为a10=29,公差为2d=6的等差数列,同理可得Qn=3n2+26n.作差对n分类讨论,即可比较Pn与Qn的大小关系.
解答: 解:(1)设等差数列{an}的公差为d,
∵a1=2,S4=26,
4×2+
4×3
2
d
=26,解得d=3,
∴an=2+3(n-1)=3n-1.
(2)∵数列{a3n-2}是首项为2,公差为3d=9的等差数列,
∴Pn=a1+a4+…+a3n-2=2n+
n(n-1)
2
×9
=
9
2
n2-
5
2
n

∵数列{a2n+8}是首项为a10=29,公差为2d=6的等差数列,
∴Qn=a10+a12+…+a2n+8=29n+
n(n-1)
2
×6
=3n2+26n.
∴Pn-Qn=
9
2
n2-
5
2
n
-(3n2+26n)=
3
2
n(n-19)

∴当1≤n≤18时,Pn<Qn
当n=19时,Pn=Qn
当n>19时,Pn>Qn
点评:本题考查了等差数列的通项公式的前n项和公式,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x∈R,定义:A(x)表示不大于x的最大整数,如A(
3
)=1,A(-0.4)=-1,A(-1.1)=-2,
(1)试写出A(x)的解析式;
(2)A(2x+1)=3,则实数x的取值范围是
 

(3)求满足条件A2(x)+A2(y)≤1的点(x,y)所构成的平面区域的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos2θ=sinθ.直线l过点(-1,2)且倾斜角为
4

(Ⅰ)在直角坐标系下,求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

6位同学站在一排照相,按下列要求,各有多少种不同排法?
①甲、乙必须站在排头或排尾
②甲、乙.丙三人相邻
③甲、乙、丙三人互不相邻
④甲不在排头,乙不在排尾
⑤若其中甲不站在左端,也不与乙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则双曲线的离心率为(  )
A、
4
3
B、
3
2
C、
2
5
5
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线y2=12x焦点的一条直线与抛物线相交于A,B两点,若|AB|=14,则线段AB的中点到y轴的距离等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}共有9项,其中a1=a9=1,且对每个i∈{1,2…,8},均有
ai+1
ai
∈{2,1,-
1
2
}|,记S=
a2
a1
+
a3
a2
+…+
a9
a8
,则S的最小值为(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x-
a
x2
6的展开式中常数项是60,则常数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
第一次第二次第三次第四次第五次
甲的成绩8287868090
乙的成绩7590917495
(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.

查看答案和解析>>

同步练习册答案