精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为.经过点且倾斜角为的直线与椭圆交于两点(其中点轴上方),的周长为.

1)求椭圆的标准方程;

2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与轴负半轴和轴所确定的半平面互相垂直,若折叠后的周长为,求的大小.

【答案】1;(2.

【解析】

1)根据的周长,结合椭圆的定义可构造方程求得,进而得到椭圆方程;

2)结合折叠前后的周长可知:,将方程与椭圆方程联立,得到韦达定理的形式,利用弦长公式和空间两点间距离公式表示出,从而构造出关于斜率的方程,求得斜率后即可得到.

1)设椭圆的标准方程为

由椭圆定义知:

的周长

解得:

椭圆的标准方程为.

2)设在新图形中对应的点为,若,则.

.

时,,不满足题意;

时,设,代入椭圆方程得:

整理可得:

,即

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形中,E为边的中点,将沿直线翻转成平面.MO分别为线段的中点,则在翻转过程中,下列说法错误的是(

A.与平面垂直的直线必与直线垂直;

B.异面直线所成角是定值;

C.一定存在某个位置,使

D.三棱锥外接球半径与棱的长之比为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,,高为的中点,为折线段上的动点,设的最小值为,若关于的方程有两不等实根,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校两个班级100名学生在一次考试中的成绩的频率分布直方图如图所示,其中成绩分组区如下表:

组号

第一组

第二组

第三组

第四组

第五组

分组

1)求频率表分布直方图中a的值;

2)根据频率表分布直方图,估计这100名学生这次考试成绩的平均分;

3)现用分层抽样的方法从第三、四、五组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的发展与进步,传播和存储状态已全面进入数字时代,以数字格式存储,以互联网为平台进行传输的音乐——数字音乐已然融入了我们的日常生活.虽然我国音乐相关市场仍处在起步阶段,但政策利好使音乐产业逐渐得到资本市场更多的关注.对比如下两幅统计图,下列说法正确的是(

A.2011~2018年我国音乐产业投融资事件数量逐年增长

B.2013~2018年我国录制音乐营收与音乐产业投融资事件数量呈正相关关系

C.2016年我国音乐产业投融资事件的平均营收约为1.27亿美元

D.2013~2019年我国录制音乐营收年增长率最大的是2018

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于类解答的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用双评+仲裁的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的类解答所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于类解答,求甲同学此题得分的分布列及数学期望

2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为类解答,记该同学6个题中得分为的题目个数为,计算事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆节来临,某公园为了丰富广大人民群众的业余生活,特地以我们都是中国人为主题举行猜谜语竞赛.现有两类谜语:一类叫事物谜,就是我们常说的谜语;另一类叫文义谜,也就是我们常说的灯谜,共8道题,其中事物谜4道题,文义谜4道题,孙同学从中任取3道题解答.

1)求孙同学至少取到2道文义谜题的概率;

2)如果孙同学答对每道事物谜题的概率都是,答对每道文义谜题的概率都是,且各题答对与否相互独立,已知孙同学恰好选中2道事物谜题,1道文义谜题,用表示孙同学答对题的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面四边形是菱形,点O是对角线的交点,M的中点,连接

1)证明:平面

2)证明:平面平面

3)当三棱锥的体积等于时,求的长.

查看答案和解析>>

同步练习册答案