精英家教网 > 高中数学 > 题目详情
在Rt△ABC中 ,ABAC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过AB两点,则这个椭圆的焦距长为   ▲       
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
给定椭圆>0,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点。求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆o:与椭圆有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程。
(2)圆o与x轴的两个交点为C、D,B是椭圆上异于点A的一个动点,在线段CD上是否存在点T,使,若存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的离心率为,短轴的长为2.
(1)求椭圆的标准方程
(2)若经过点的直线与椭圆交于两点,满足,求的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知直线与椭圆相交于两点,为坐标原点,
(1)求证:
(2)如果直线向下平移1个单位得到直线,试求椭圆截直线所得线段的长度。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点,使得,其中O为坐标原点,则椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F(c, 0)是椭圆的右焦点,F与椭圆上点的距离的最大值为M,最小值为m,则椭圆上与F点的距离等于的点的坐标是                             (   )
A.(c, ±)B.(-c, ±)C.(0, ±b)D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程表示焦点在轴上的椭圆,则的取值范围是  ▲   .

查看答案和解析>>

同步练习册答案