精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)的离心率为 ,C为椭圆上位于第一象限内的一点.

(1)若点C的坐标为(2, ),求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 = ,求直线AB的斜率.

【答案】
(1)解:由题意可知:椭圆的离心率e= = = ,则 = ,①

由点C在椭圆上,将(2, )代入椭圆方程, ,②

解得:a2=9,b2=5,

∴a=3,b=


(2)方法一:由(1)可知: = ,则椭圆方程:5x2+9y2=5a2

设直线OC的方程为x=my(m>0),B(x1,y1),C(x2,y2),

,消去x整理得:5m2y2+9y2=5a2

∴y2= ,由y2>0,则y2=

= ,则AB∥OC,设直线AB的方程为x=my﹣a,

,整理得:(5m2+9)y2﹣10amy=0,

由y=0,或y1=

= ,则(x1+a,y1)=( x2 y2),

则y2=2y1

=2× ,(m>0),

解得:m=

则直线AB的斜率 =

方法二:由(1)可知:椭圆方程5x2+9y2=5a2,则A(﹣a,0),

B(x1,y1),C(x2,y2),

= ,则(x1+a,y1)=( x2 y2),则y2=2y1

由B,C在椭圆上,

,解得:

则直线直线AB的斜率k= =

直线AB的斜率


【解析】(1)根据离心率表示出,根据点C在椭圆上,代入即可得到a,b的值,(2)方法一:根据(1)得到椭圆方程,设直线OC的方程为x=my(m>0),B(x1,y1),C(x2,y2),联立方程利用韦达定理可解出m的值,方法二:根据(1)得到椭圆方程,则A(﹣a,0),

B(x1,y1),C(x2,y2),由向量关系和B、C在椭圆上,解出x2,y2,可得直线AB的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】要想得到函数 的图象,只需将函数y=sinx的图象上所有的点( )
A.先向右平移 个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变
B.先向右平移 个单位长度,横坐标缩短为原来的 倍,纵坐标不变
C.横坐标缩短为原来的 倍,纵坐标不变,再向右平移 个单位长度
D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)与 =(2,sinC)共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )+2cos2x,将函数y=f(x)的图象向右平移 个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是(  )
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在L上的投影为N,则 的最大值是(  )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程: (t为参数),曲线C的参数方程: (α为参数),且直线交曲线C于A,B两点.
(Ⅰ)将曲线C的参数方程化为普通方程,并求θ= 时,|AB|的长度;
(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA||PB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且 ,设∠BOC=θ.

(1)记游泳池及其附属设施的占地面积为f(θ),求f(θ)的表达式;
(2)怎样设计才能符合园林局的要求?

查看答案和解析>>

同步练习册答案