如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.
(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.
试问:是否存在直线AB,使得S1=S2?说明理由.
(Ⅰ).
(Ⅱ)不存在直线,使得 . 12分
【解析】
试题分析:(Ⅰ)依题意,直线的斜率存在,设其方程为.
将其代入,
整理得 .
设,, 所以 . 4分
故点的横坐标为.
依题意,得,
解得 . 6分
(Ⅱ)解:假设存在直线,使得 ,显然直线不能与轴垂直.
由(Ⅰ)可得 .
因为 ,所以 ,
解得 , 即 .
因为 △∽△,
所以 .
所以 ,
整理得 .
因为此方程无解,所以不存在直线,使得 . 12分
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,三角形面积计算。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用弦长公式,确定得到三角形面积表达式,实现对“存在性问题”的研究。
科目:高中数学 来源: 题型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中数学 来源:广东省揭阳市2007年高中毕业班第一次高考模拟考试题(理科) 题型:044
如图,在直角坐标系xOy中,已知椭圆的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,
()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的
直线与椭圆相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,
()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
查看答案和解析>>
科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com