精英家教网 > 高中数学 > 题目详情

【题目】设函数 为常数,e=2.71828……是自然对数的底数).
(1)当 时,求函数 的单调区间;
(2)若函数 内存在两个极值点,求 的取值范围.

【答案】
(1)解:函数 的定义域为

可得 ,

所以当 时, ,函数 单调递减;

时, ,函数 单调递增;

所以 的单调递减区间为 单调递增区间为


(2)解:由1知, 时,函数 内单调递减,

内不存在极值点;

时,设函数 ,,

因为 ,

时,当 时, , 单调递增;

内不存在两个极值点;

时,得 时, ,函数 单调递减;

时, ,函数 单调递增;

所以函数 的最小值为 ,

函数 内存在两个极值点,

当且仅当 ,解得 .

综上所述,函数 内存在两个极值点时,k的取值范围为


【解析】(1)根据题意结合已知条件求出原函数的导函数利用导函数在指定区间上的的正负情况得出原函数的增减性以及增减区间。(2)函数f(x) 在( 0 , 2 ) 内存在两个极值点,等价于它的导函数f(x) 在 ( 0 , 2 ) 内存在两个不同的零点。
【考点精析】掌握利用导数研究函数的单调性和函数的零点是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 为线段(含端点)上一个动点,设对于函数,给出以下三个结论:

①当时,函数的值域为

②对于任意的,均有

③对于任意的,函数的最大值均为4.

其中所有正确的结论序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数.

(1)求关于的函数关系式;

(2)当时,求这种设备的最佳更新年限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其中工作年限与年推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

4

5

6

(1)请画出上表数据的散点图;

(2)求年推销金额关于工作年限的线性回归方程;

(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.

,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c﹣a=2acosB,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 t为参数),C2 (θ为参数),
(Ⅰ)当α= 时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a , 若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

同步练习册答案