精英家教网 > 高中数学 > 题目详情
15、如图,在Rt△ABC中,∠A=90°,以AB为直径的半圆交BC于D,过D作圆的切线交AC于E.
求证:(1)AE=CE;
(2)CD•CB=4DE2
分析:(1)连接AD,根据直径所对的圆周角是直角得到直角三角形ACD,根据切线的判定定理证明AC也是圆的切线.根据切线长定理得到AE=DE,根据等边对等角和等角的余角相等证明CE=DE.
(2)根据切割线定理和(1)中的结论即可证得:CD•CB=4DE2
解答:证明:(1)连接AD;
∵AB是圆的直径,
∴∠ADC=∠ADB=90°,
∵∠A=90°,
∴AC是圆的切线;
又∵DE是圆的切线,
∴DE=AE,
∴∠ADE=∠EAD,
∴∠C=∠CDE,
∴CE=DE,
∴AE=CE.
(2)根据切割线定理得CA2=CD•CB;
∵由(1)得CA=2DE,
∴CD•CB=4DE2
点评:本题主要考查了与圆有关的比例线段、圆的切割线定理.构造直径所对的圆周角是圆中构造直角三角形的一种常用方法.掌握切线长定理和切割线定理的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2
3
,则AC的长为(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

8.如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设
DM
DN
=λ,试确定实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步练习册答案