精英家教网 > 高中数学 > 题目详情

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)详见解析;(Ⅱ)数学期望为6,方差为2.4.

【解析】

1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.

2由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.

列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差

解:(1)完成列联表(单位:人):

经常网购

偶尔或不用网购

合计

男性

50

50

100

女性

70

30

100

合计

120

80

200

由列联表,得:

能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.

2)①由题意所抽取的10名女市民中,经常网购的有人,

偶尔或不用网购的有人,

选取的3人中至少有2人经常网购的概率为:

② 由列联表可知,抽到经常网购的市民的频率为:

将频率视为概率,

从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6

由题意

随机变量的数学期望

方差DX=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:是正实数,当时,,则称是“—数列”.

1)若是“—数列”且,写出的所有可能值;

2)设是“—数列”,证明:是等差数列当且仅当单调递减;是等比数列当且仅当单调递增;

3)若是“—数列”且是周期数列(即存在正整数,使得对任意正整数,都有),求集合的元素个数的所有可能值的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数\.

1)若处的切线垂直于y轴,求a的值;

2)若对于任意,都有恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是无穷数列,满足.

1)若,求的值;

2)求证:“数列中存在使得”是“数列中有无数多项是”的充要条件;

3)求证:在数列,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合的元素均为实数,若对任意,存在,使得,则称元素个数最少的孪生集;称孪生集孪生集“2级孪生集;称“2级孪生集孪生集“3级孪生集,依此类推……

1)设,直接写出集合孪生集

2)设元素个数为的集合孪生集分别为,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为

3)若,请直接写出级孪生集的个数,及所有级孪生集的并集的元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数).

1)如果函数有相同的极值点,求的值;

2)当恒成立,求的取值范围;

3)记函数,若函数个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1ρ2cosθ

(1)求C1C2交点的直角坐标;

(2)若直线l与曲线C1C2分别相交于异于原点的点MN,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了位农民。若每个农民的年收人相互独立,问:这位农民中的年收入不少于千元的人数最有可能是多少?

附:参考数据与公式

则①;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

同步练习册答案