精英家教网 > 高中数学 > 题目详情
15.设命题p:(x-2)2≤1,命题q:x2+(2a+1)x+a(a+1)≥0,若p是q的充分不必要条件,求实数a的取值范围.

分析 命题p:(x-2)2≤1,可得解集A=[1,3].命题q:x2+(2a+1)x+a(a+1)≥0,可得B=(-∞,-a-1]∪[-a,+∞).根据p是q的充分不必要条件,即可得出.

解答 解:命题p:(x-2)2≤1,解得1≤x≤3,记A=[1,3].
命题q:x2+(2a+1)x+a(a+1)≥0,解得x≤-a-1,或x≥-a.记B=(-∞,-a-1]∪[-a,+∞).
∵p是q的充分不必要条件,∴3≤-a-1,或-a≤1,∴a≤-4,或a≥-1.
∴实数a的取值范围为(-∞,-4]∪[-1,+∞).

点评 本题考查了不等式的解法、简易逻辑,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.命题“?x∈R,x2-4x+4≥0”的否定是(  )
A.?x∈R,x2-4x+4<0B.?x∉R,x2-4x+4<0
C.$?{x_0}∈R,{x_0}^2-4{x_0}+4<0$D.$?{x_0}∉R,{x_0}^2-4{x_0}+4<0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函数y=f(x)在[0,π]存在单调增区间,求实数a的取值范围;
(Ⅱ)若f($\frac{π}{2}$)=0,证明:对于?x∈[-1,$\frac{1}{2}$],总有f(-x-1)+2f′(x)•cos(-x-1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将一枚质地均匀的硬币随机抛掷两次,出现一次正面向上,一次反面向上的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2x3+3x2+6x-5,则f′(0)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=4x的交点为F,直线y=x-1与C相交于A,B两点,与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=2(a>0,b>0)的渐近线相交于M,N两点,若线段AB与MN的中点相同,则双曲线E离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.2C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow{b}$,则下列结论正确的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$z=\frac{2+i}{i}$的共轭复数是(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案