【题目】如图,在△ABC中,AB=2, cos2B+5cosB﹣ =0,且点D在线段BC上.
(1)若∠ADC= ,求AD的长;
(2)若BD=2DC, =4 ,求△ABD的面积.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在[ ,+∞)的单调性,并用单调性的定义证明你的结论;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]已知函数f(x)=|x﹣a|+|2x﹣1|(a∈R).
(Ⅰ)当a=1时,求f(x)≤2的解集;
(Ⅱ)若f(x)≤|2x+1|的解集包含集合[ ,1],求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1+2a2+…+nan=4﹣ .
(1)求数列{an}的通项公式;
(2)若bn=(3n﹣2)an , 求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x+ )cos(x+ )的图象沿x轴向右平移 个单位后,得到一个偶函数的图象,则φ的取值不可能是( )
A.
B.﹣
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,D在AB上,AD:DB=1:2,E为AC中点,CD、BE相交于点P,连结AP.设 =x +y (x,y∈R),则x,y的值分别为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)﹣m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0 , f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2 , 两切线的斜率分别为k1 , k2 , 是否存在实数c,使得 为定值?若存在,求出c的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,2anan+1=tSn﹣2,其中t为常数. (Ⅰ)设bn=an+1+an , 求证:{bn}为等差数列;
(Ⅱ)若t=4,求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要测量电视塔AB的高度,在C点测得塔顶的仰角是45°,在D点测得塔顶的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度是( )
A.30m
B.40m
C. m
D. m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com