精英家教网 > 高中数学 > 题目详情
精英家教网已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求证:平面ADE⊥平面ACD;
(Ⅲ)求四棱锥A-BCDE的体积.
分析:(Ⅰ)取AC中点G,连接FG、BG,根据三角形中位线定理,得到四边形FGBE为平行四边形,进而得到EF∥BG,再结合线面平行的判定定理得到EF∥面ABC;
(Ⅱ)根据已知中△ABC为等边三角形,G为AC的中点,DC⊥面ABC得到BG⊥AC,DC⊥BG,根据线面垂直的判定定理得到BG⊥面ADC,则EF⊥面ADC,再由面面垂直的判定定理,可得面ADE⊥面ACD;
(Ⅲ)方法一:四棱锥四棱锥A-BCDE分为两个三棱锥E-ABC和E-ADC,分别求出三棱锥E-ABC和E-ADC的体积,即可得到四棱锥A-BCDE的体积.
方法二:取BC的中点为O,连接AO,可证AO⊥平面BCDE,即AO为VA-BCDE的高,求出底面面积和高代入棱锥体积公式即可求出四棱锥A-BCDE的体积.
解答:精英家教网证明:(Ⅰ)取AC中点G,连接FG、BG,
∵F,G分别是AD,AC的中点 
∴FG∥CD,且FG=
1
2
DC=1.
∵BE∥CD∴FG与BE平行且相等
∴EF∥BG.      
EF?面ABC,BG?面ABC
∴EF∥面ABC…(4分)
(Ⅱ)∵△ABC为等边三角形∴BG⊥AC
又∵DC⊥面ABC,BG?面ABC∴DC⊥BG
∴BG垂直于面ADC的两条相交直线AC,DC,
∴BG⊥面ADC.                          …(6分)
∵EF∥BG
∴EF⊥面ADC
∵EF?面ADE,∴面ADE⊥面ADC.  …(8分)
解:(Ⅲ)
方法一:连接EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.
VA-BCDE=VE-ABC+VE-ACD=
1
3
×
3
4
×1+
1
3
×1×
3
2
=
3
12
+
3
6
=
3
4
.…(12分)
方法二:取BC的中点为O,连接AO,则AO⊥BC,又CD⊥平面ABC,
∴CD⊥AO,BC∩CD=C,∴AO⊥平面BCDE,
∴AO为VA-BCDE的高,AO=
3
2
SBCDE=
(1+2)×1
2
=
3
2
,∴VA-BCDE=
1
3
×
3
2
×
3
2
=
3
4
点评:本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,棱锥的体积,其中熟练掌握空间线面平行或垂直的判定、性质、定义、几何特征是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠BCD=60°,BC=1,E为CD的中点,PC与平面ABCD成60°角.
(1)求证:平面EPB⊥平面PBA;
(2)求二面角P-BD-A 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90,PA=PB,PC=PD.
(Ⅰ)证明CD与平面PAD不垂直;
(Ⅱ)证明平面PAB⊥平面ABCD;
(Ⅲ)如果CD=AD+BC,二面角P-BC-A等于60°,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年甘肃西北师大附中高三11月月考理科数学试卷(解析版) 题型:解答题

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;

(II)求证:平面PAB⊥平面ABCD;

(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省高三(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

同步练习册答案