精英家教网 > 高中数学 > 题目详情

【题目】已知数列,,对任意n恒成立.

1)求证:();

2)求证:().

【答案】1)答案见解析(2)答案见解析

【解析】

1)利用数学归纳法直接证明,假设当,成立,则当,,代入即可证得:,成立,即可求得答案;

2)由(1,利用数学归纳法证明,即可求得答案;

(1)当时,

满足成立.

假设当时,结论成立.即:成立

下证:当时,成立。

即:当时,成立

综上所述:()成立。

(2)①当时,成立,

时,成立,

②假设时(),结论正确,即:成立

下证:当时,成立.

要证,

只需证

只需证:,

只需证:

即证:,().

时,

上递增,

时,恒成立。

即:当时,成立。

即:当时,恒成立.

,恒成立.

由①②可得:对任意的正整数,不等式恒成立,命题得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,已知PAPBPC两两垂直,PB3PC4,且三棱锥PABC的体积为10.

1)求点A到直线BC的距离;

2)若D是棱BC的中点,求异面直线PBAD所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的期,不低于百斤且不超过百斤的有期,超过百斤的有.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.

鱼的重量(单位:百斤)

冲水机运行台数

1

2

3

1)根据数据可知具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.

2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:

若某台增氧冲水机运行,则该台冲水机每期盈利千元;若某台冲水机未运行,则该台冲水机每期亏损千元.以频率 作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?

:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.

1)求曲线的直角坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,设整除整除,令表示集合所含元素的个数.

1)写出的值;

2)当时,写出的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左焦点为,点在椭圆.

1)求椭圆的方程;

2)已知圆,连接并延长交圆于点为椭圆长轴上一点(异于左、右焦点),过点作椭圆长轴的垂线分别交椭圆和圆于点均在轴上方).连接,记的斜率为的斜率为.

①求的值;

②求证:直线的交点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商家统计了去年两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中点表示产品2月份销售额约为20万元,点表示产品9月份销售额约为25万元.

根据图中信息,下面统计结论错误的是(

A.产品的销售额极差较大B.产品销售额的中位数较大

C.产品的销售额平均值较大D.产品的销售额波动较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”简称“创城”活动中,教委对本区ABCD四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成如表:

学校

A

B

C

D

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值

假设每名高中学生是否参与“创城”活动是相互独立的.

若该区共2000名高中学生,估计A学校参与“创城”活动的人数;

在随机抽查的100名高中学生中,从AC两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;

若将表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求矩阵M的特征值和特征向量.

查看答案和解析>>

同步练习册答案