如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
(1)证明详见解析;(2).
解析试题分析:(1) 由PD⊥平面ABCD,得PD⊥BC,由∠BCD=90°,得CD⊥BC,所以BC⊥平面PCD,那么PC⊥BC;(2)利用等积法,先求出棱锥的体积V=S△ABC·PD=,再求出S△PBC=,由S△PBC·h=V=,得h=.
解:(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC. 1分
由∠BCD=90°,得CD⊥BC. 3分
又PD∩DC=D, PD,DC 平面PCD,
∴ BC⊥平面PCD. 5分
∵ PC 平面PCD,故PC⊥BC. 7分
(2)连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴∠ABC=90°. 8分
由AB=2,BC=1,得△ABC的面积S△ABC=1. 9分
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V=S△ABC·PD=. 10分
∵ PD⊥平面ABCD,DC平面ABCD,∴ PD⊥DC. ....11分
又∴PD=DC=1,∴PC==.由PC⊥BC,BC=1,
得△PBC的面积S△PBC=. .. ..12分
∵VA - PBC=VP - ABC,
∴S△PBC·h=V=,得h=. .13分
故点A到平面PBC的距离等于. 14分
考点:1.线、面之间的平行与垂直关系的判定与性质;2.三棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱中,侧面,,,底面是边长为的正三角形,其重心为点,是线段上一点,且.
(1)求证:侧面;
(2)求平面与底面所成锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,空间中有一直角三角形,为直角,,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面面;
(2)求与平面所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com