精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

(1)证明详见解析;(2).

解析试题分析:(1) 由PD⊥平面ABCD,得PD⊥BC,由∠BCD=90°,得CD⊥BC,所以BC⊥平面PCD,那么PC⊥BC;(2)利用等积法,先求出棱锥的体积V=SABC·PD=,再求出S△PBC,由S△PBC·h=V=,得h=
解:(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC.      1分
由∠BCD=90°,得CD⊥BC.         3分
又PD∩DC=D, PD,DC 平面PCD,
∴ BC⊥平面PCD.         5分
∵ PC 平面PCD,故PC⊥BC.           7分
 
(2)连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴∠ABC=90°.   8分
由AB=2,BC=1,得△ABC的面积S△ABC=1.  9分
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V=SABC·PD=.                        10分
∵ PD⊥平面ABCD,DC平面ABCD,∴ PD⊥DC.         ....11分
∴PD=DC=1,∴PC=.由PC⊥BC,BC=1,
得△PBC的面积S△PBC.                 .. ..12分
∵VA - PBC=VP - ABC
S△PBC·h=V=,得h=.             .13分
故点A到平面PBC的距离等于.              14分
考点:1.线、面之间的平行与垂直关系的判定与性质;2.三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,平面平面,四边形为矩形,的中点,.(1)求证:;(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,侧面,底面是边长为的正三角形,其重心为点,是线段上一点,且

(1)求证:侧面
(2)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图4,四边形为正方形,平面于点,交于点.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,⊥平面,,分别为线段的中点.

(1)求证:∥平面;    
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图3,已知二面角的大小为,菱形在面内,两点在棱上,的中点,,垂足为.
(1)证明:平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,空间中有一直角三角形为直角,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面
(2)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为
           

查看答案和解析>>

同步练习册答案