精英家教网 > 高中数学 > 题目详情

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(﹣ ),∠AOB=α.
(1)求 的值;
(2)设∠AOP=θ( ≤θ≤ ), = + ,四边形OAQP的面积为S,f(θ)=( 2+2S2 ,求f(θ)的最值及此时θ的值.

【答案】
(1)解:依题意,tanα═﹣2,

= =﹣


(2)解:由已知点P的坐标为P(cosθ,sinθ),

= + ,| =|| |,

∴四边形OAQP为菱形,

∴S=2SOAP=sinθ,

∵A(1,0),P(cosθ,sinθ),

=(1+cosθ,sinθ),

=1+cosθ,

∴f(θ)=(cosθ+ 2+2sin2θ﹣ =﹣(cosθ﹣ 2+2

∵﹣ ≤cosθ≤

∴当cosθ= ,即θ= 时,f(θ)max=2;

当cosθ=﹣ ,即θ= 时,f(θ)min=1


【解析】(1)依题意,可求得tanα=﹣2,将 中的“弦”化“切”即可求得其值;(2)利用向量的数量积的坐标运算可求得f(θ)=(cosθ+ 2+2sin2θ﹣ =﹣(cosθ﹣ 2+2,利用﹣ ≤cosθ≤ ,即可求得f(θ)的最值及此时θ的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上. (I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,给出以下结论: ①直线A1B与B1C所成的角为60°;
②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是
③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ的体积恒为
其中,正确结论的个数是(

A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;
(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为偶函数.
(1)求实数t值;
(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判断λ与E的关系;
(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2﹣ ,2﹣ ],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx﹣ )( <ω<2),在区间(0, )上(
A.既有最大值又有最小值
B.有最大值没有最小值
C.有最小值没有最大值
D.既没有最大值也没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[0,θ]上的值域为[0,2 +1],求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=| ﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,a2=6,且数列{an1﹣an}{n∈N*}是公差为2的等差数列.
(1)求{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 求满足不等式Sn 的n的最小值.

查看答案和解析>>

同步练习册答案