精英家教网 > 高中数学 > 题目详情

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

超过25000元至35000元的部分

税率

3

10

20

25

1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?

2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.

【答案】1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元

【解析】

1)分段计算个人所得税额;
2)随机变量X的所有可能的取值为990119013901590,分别求出各值对应的概率,列出分布列,求期望即可.

解:(1)李某月应纳税所得额(含税)为:2960050001000200021600
不超过3000的部分税额为3000×3%90
超过3000元至12000元的部分税额为9000×10%900元,
超过12000元至25000元的部分税额为9600×20%1920
所以李某月应缴纳的个税金额为9090019202910元,
2)有一个孩子需要赡养老人应纳税所得额(含税)为:2000050001000200012000元,
月应缴纳的个税金额为:90900990
有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000元,
月应缴纳的个税金额为:909004001390元;
没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000元,
月应缴纳的个税金额为:909002001190元;
没有孩子不需要赡养老人应纳税所得额(含税)为:20000500015000元,
月应缴纳的个税金额为:909006001590元;

所以随机变量X的分布列为:

990

1190

1390

1590

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

10

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知函数

(1)当时,求不等式的解集;

(2)若不等式的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若曲线的一条切线方程为

(i)求的值;

(ii)若时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)已知为自然对数的底数,求函数处的切线方程;

(2)当时,方程有唯一实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.

(1)求该椭圆的标准方程;

(2)上一点(轴上方),直线分别交椭圆于两点,若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,,,,底面,,点在棱上,且

(1)证明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的最大值;

2)如果函数在公共定义域D上,满足,那么就称伴随函数”.已知函数.若在区间上,函数伴随函数,求实数的取值范围;

3)若,正实数满足,证明:.

查看答案和解析>>

同步练习册答案