精英家教网 > 高中数学 > 题目详情
精英家教网若定义在R上的函数f(x)满足f(-x)=f(x),f(2-x)=f(x),且当x∈[0,1]时,其图象是四分之一圆(如图所示),则函数H(x)=|xex|-f(x)在区间[-3,1]上的零点个数为(  )
A、5B、4C、3D、2
分析:求出函数f(x)=xex的导函数,由导函数等于0求出x的值,以求出的x的值为分界点把原函数的定义域分段,以表格的形式列出导函数在各区间段内的符号及原函数的增减性,从而得到函数的单调区间及极值点,把极值点的坐标代入原函数求极值.然后判断y=|xex|的极值与单调性,然后推出零点的个数.
解答:解:定义在R上的函数f(x)满足f(-x)=f(x),f(2-x)=f(x),
∴函数是偶函数,关于x=1对称,
∵函数f(x)=xex的定义域为R,
f′(x)=(xex)′=x′ex+x(ex)′=ex+xex
令f′(x)=ex+xex=ex(1+x)=0,解得:x=-1.
列表:
x (-∞,-1) -1 (-1,+∞)
f′(x) - 0 +
f(x) 极小值
由表可知函数f(x)=xex的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).
当x=-1时,函数f(x)=xex的极小值为f(-1)=-
1
e
精英家教网
y=|xex|,在x=-1时取得极大值:
1
e
,x∈(0,+∞)是增函数,
x<0时有3个交点,x>0时有1个交点.
共有4个交点.
故选:B.
点评:本题考查了利用导数研究函数的单调性与极值,在求出导函数等于0的x值后,借助于表格分析能使解题思路更加清晰,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①若函数f(x)是f(x)=x2(x∈R),则f(x)一定是单函数;
②若f(x)为单函数,x1、x2∈A且x1≠x2,则f(x1)≠f(x2);
③若定义在R上的函数f(x)在某区间上具有单调性,则f(x)一定是单函数;
④若函数f(x)是周期函数,则f(x)一定不是单函数;
⑤若函数f(x)是奇函数,则f(x)一定是单函数.
其中的真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足对任意x,y∈R,都有f(x+y)=f(x)+f(y)+2,则下列说法一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)求证:f(x)是R上的增函数;
(3)若f(4)=5,不等式f(cos2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)为奇函数,且在[0,+∞)上是增函数.
(1)求证:f(x)在(-∞,0]上也是增函数;
(2)对任意θ∈R,不等式f(cos2θ-3)+f(2m-sinθ)>0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案