精英家教网 > 高中数学 > 题目详情
6.将函数y=$\sqrt{3}$sin($\frac{π}{4}$x)的图象向左平移3个单位,得函数y=$\sqrt{3}$sin($\frac{π}{4}$x+φ)(|φ|<π)的图象(如图),点M,N分别是函数f(x)图象上y轴两侧相邻的最高点和最低点,设∠MON=θ,则tan(φ-θ)的值为(  )
A.1-$\sqrt{3}$B.2-$\sqrt{3}$C.1+$\sqrt{3}$D.-2+$\sqrt{3}$

分析 根据函数图象的变换,求得φ的值,由正弦函数的性质,求得M和N的坐标,利用余弦定理求得θ的值,即可求得tan(φ-θ).

解答 解:函数y=$\sqrt{3}$sin($\frac{π}{4}$x)的图象向左平移3个单位,可得:y=$\sqrt{3}$sin[$\frac{π}{4}$(x+3)]=$\sqrt{3}$sin($\frac{π}{4}$x+$\frac{3π}{4}$),
则φ=$\frac{3π}{4}$,
∴M(-1,$\sqrt{3}$),N(3,-$\sqrt{3}$),
则丨OM丨=2,丨ON丨=2$\sqrt{3}$,丨MN丨=2$\sqrt{7}$,
cosθ=$\frac{丨OM{丨}^{2}+丨ON{丨}^{2}-丨MN{丨}^{2}}{2丨OM丨×丨ON丨}$=-$\frac{\sqrt{3}}{2}$,
由0<θ<π,则θ=$\frac{5π}{6}$,
则tan(φ-θ)=tan($\frac{3π}{4}$-$\frac{5π}{6}$)=-tan$\frac{π}{12}$=-tan($\frac{π}{4}$-$\frac{π}{6}$)=-$\frac{tan\frac{π}{4}-tan\frac{π}{6}}{1+tan\frac{π}{4}tan\frac{π}{6}}$=-(2-$\sqrt{3}$)=-2+$\sqrt{3}$,
tan(φ-θ)的值-2+$\sqrt{3}$,
故选D.

点评 本题考查正弦函数的图象变换,余弦定理,两角差的正切公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n∈{N_+})$,用数学归纳法证明$f({2^n})>\frac{n+1}{2}$时,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线的方程为y=3x,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2},∁RB={x|(x-1)(x+2)≥0},则A∩B=(  )
A.{-1,0,1}B.{-1,0}C.{-2,-1,0}D.{-2,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设F1,F2分别是椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2作倾斜角为$\frac{π}{3}$的直线交椭圆D于A,B两点,F1到直线AB的距离为2$\sqrt{3}$,连接椭圆D的四个顶点得到的菱形面积为2$\sqrt{5}$.
(1)求椭圆D的方程;
(2)设过点F2的直线l被椭圆D和圆C:(x-2)2+(y-2)2=4所截得的弦长分别为m,n,当m•n最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若等比数列{an}满足a2a4=a5,a4=8,则公比q=2,前n项和Sn=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方体ABCD-A1B1C1D1的棱长为a(a>1),动点E,F在棱A1B1上,动点P,Q分别在棱CD,AD上,若EF=1,A1F=x,DP=y,DQ=z(x,y,z均大于零),则四面体PEFQ的体积(  )
A.与x,y,z都有关B.与x有关,与y,z无关
C.与y有关,与x,z无关D.与z有关,与x,y无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合得最好的模型为(  )
A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90
C.模型3的相关指数R2为0.28D.模型4的相关指数R2为0.55

查看答案和解析>>

同步练习册答案