精英家教网 > 高中数学 > 题目详情

【题目】2020年春季受新冠肺炎疫情的影响,利用网络软件办公与学习成为了一种新的生活方式,网上办公软件的开发与使用成为了一个热门话题.为了解钉钉软件的使用情况,钉钉公司借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

35岁及以下

70

30

100

35岁以上

60

40

100

合计

130

70

200

1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为钉钉软件的使用情况与年龄有关?

2)现从所抽取的35岁以上的网友中利用分层抽样的方法再抽取5.从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用钉钉软件的概率.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1)能在犯错误的概率不超过0.15的前提下认为钉钉软件的使用情况与年龄有关.

2

【解析】

(1)根据列联表计算,再比较参考数据即可得到答案.

2)首先利用分层抽样得到经常使用“钉钉”软件和偶尔或不用“钉钉”软件的人数,再利用古典概型公式即可得到答案.

1)由列联表可得:.

所以能在犯错误的概率不超过0.15的前提下认为钉钉软件的使用情况与年龄有关.

2)依题意可得,在每层中所抽取的比例为

所以从经常使用“钉钉”软件的人中抽取(人),

从偶尔或不用“钉钉”软件的人中抽取(人).

设这5人中,经常使用“钉钉”软件的3人分别为

偶尔或不用“钉钉”软件的2人分别为

则从5人中选出2人的所有可能结果为:,共10种.

选出的2人中没有1人经常使用钉钉软件的可能结果为,共1.

故选出的2人中至少有1人经常使用“钉钉”软件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一块以点为圆心,半径为百米的圆形草坪,草坪内距离百米的点有一用于灌溉的水笼头,现准备过点修一条笔直小路交草坪圆周于两点,为了方便居民散步,同时修建小路,其中小路的宽度忽略不计.

1)若要使修建的小路的费用最省,试求小路的最短长度;

2)若要在区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“绿水青山就是金山银山”的理念越来越深入人心,据此,某网站调查了人们对生态文明建设的关注情况,调查数据表明,参与调查的人员中关注生态文明建设的约占80%.现从参与调查的关注生态文明建设的人员中随机选出200人,并将这200人按年龄(单位:岁)分组:第1[1525),第2[2535),第3[3545),第4[4555),第5[5565],得到的频率分布直方图如图所示.

(Ⅰ)求这200人的平均年龄(每一组用该组区间的中点值作为代表)和年龄的中位数(保留一位小数);

(Ⅱ)现在要从年龄在第12组的人员中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求抽取的3人中恰有2人的年龄在第2组中的概率;

(Ⅲ)若从所有参与调查的人(人数很多)中任意选出3人,设这3人中关注生态文明建设的人数为X,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是椭圆的两个焦点,过分别作直线,且,若与椭圆交于两点,与椭圆交于两点(点轴上方),则四边形面积的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某企业中随机抽取了5名员工测试他们的艺术爱好指数和创新灵感指数,统计结果如下表(注:指数值越高素质越优秀):

1)求创新灵感指数关于艺术爱好指数的线性回归方程;

2)企业为提高员工的艺术爱好指数,要求员工选择音乐和绘画中的一种进行培训,培训音乐次数对艺术爱好指数的提高量为,培训绘画次数对艺术爱好指数的提高量为,其中为参加培训的某员工已达到的艺术爱好指数.艺术爱好指数已达到3的员工甲选择参加音乐培训,艺术爱好指数已达到4的员工乙选择参加绘画培训,在他们都培训了20次后,估计谁的创新灵感指数更高?

参考公式:回归方程中,.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称之为鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PDM(异于点D),交PCN(异于点C.

1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,直线lC交于MN两点.

1)若l过点F,点MN到直线y2的距离分别为d1d2,且,求l的方程;

2)若点M的坐标为(01),直线m过点MC于另一点N′,当直线lm的斜率之和为2时,证明:直线NN′过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,右焦点为,且椭圆上的点到点的距离的最小值与最大值的积为1,圆轴交于两点.

1)求椭圆的方程;

2)动直线与椭圆交于两点,且直线与圆相切,求的面积与的面积乘积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①函数上单调递减,在上单调递增;

②若函数上有两个零点,则的取值范围是

③当时,函数的最大值为0

④函数上单调递减;

上述命题正确的是_________(填序号).

查看答案和解析>>

同步练习册答案