精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

【答案】(1)4;(2)16.

【解析】

(1)根据题意,将曲线C的极坐标方程变形为标准方程,将直线的参数方程与曲线C的方程联立,可得,由一元二次方程根与系数的关系计算可得答案;

(2)写出曲线C的参数方程,分析可得以P为顶点的内接矩形周长l,由正弦函数的性质分析可得答案.

(1)由,将x=ρcosθ,y=ρsinθ代入得到+3=12,

所以曲线C的直角坐标方程为+3=12,的极坐标为,化为直角坐标为(-2,0)

由直线l的参数方程为:t为参数),

知直线l是过点P(-2,0),且倾斜角为的直线,

把直线的参数方程代入曲线C得,

所以|PM||PN|=|t1t2|=4.

(2)由曲线C的方程为

不妨设曲线C上的动点

则以P为顶点的内接矩形周长l

又由sin(θ)≤1,则l≤16;

因此该内接矩形周长的最大值为16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示。

(1)求居民月收入在[3000,3500)内的频率;

(2)根据频率分布直方图求出样本数据的中位数;

(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城镇

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

农村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.4

45.8

(1)现从上述表格中随机抽取一年数据,试估计该年城镇人均住房建筑面积达到小康生活住房标准的概率;

(2)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2平方米的概率;

(3)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为,农村人均住房面积的方差为 ,判断的大小.(只需写出结论).

(注:方差 ,其中 ,…… 的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的一个顶点,的短轴是圆的直径,直线过点P且互相垂直,交椭圆于另一点D交圆AB两点

求椭圆的标准方程;

面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.

(1)求椭圆的方程:

(2)若是椭圆上的动点,求的取值范围;

(3)直线与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

求实数a的值;

若关于x的方程上恰有两个不相等的实数根,求实数b的取值范围;

证明:参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表面积为的球面上有四点SABC,且是等边三角形,球心O到平面ABC的距离为1,若平面平面ABC,则三棱锥体积的最大值为______

查看答案和解析>>

同步练习册答案