精英家教网 > 高中数学 > 题目详情
17.一根长为lcm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是s=3cos($\sqrt{\frac{g}{l}}t+\frac{π}{3}$),t∈[0,+∞)
(1)求小球摆动的周期;
(2)已知g≈980cm/s2,要使小球摆动的周期是1s,线的长度l应当是多少?(精确到0.1cm)

分析 (1)根据余弦函数的图象与性质,求出周期T的值;
(2)根据函数的周期,列出方程求出绳长l的值.

解答 解:(1)∵小球的位移s与时间t的函数关系为
s=3cos($\sqrt{\frac{g}{l}}t+\frac{π}{3}$),t∈[0,+∞),
∴小球摆动的周期为T=$\frac{2π}{ω}$=$\frac{2π}{\sqrt{\frac{g}{l}}}$=$\frac{2π\sqrt{lg}}{g}$(s);
(2)g≈980cm/s2,T=1,∴$\frac{2π\sqrt{lg}}{g}$=1,
∴l=$\frac{g}{{4π}^{2}}$=$\frac{980}{4×3.14×3.14}$≈24.8cm;
所以绳长应为24.8cm.

点评 本题考查了余弦函数的周期性问题,也考查了计算能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一条光线从点(-2,-3)射出,经y轴反射后经过圆(x+3)2+(y-2)2=1的圆心,则反射光线所在直线的斜率为(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是直线y=x+1上一点,M,N分别是圆C1:(x-3)2+(y+3)2=1与圆C2:(x+4)2+(y-4)2=1上的点则|PM|-|PN|的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在风速为75($\sqrt{6}$-$\sqrt{2}$)km/h的西风中,飞机以150km/h的航速向西北飞行,求没有风时飞机的航速与航向.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}为空间的单位正交基底,且$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow{b}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$+$\overrightarrow{k}$,若m$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则实数m的值为(  )
A.$\frac{4}{9}$B.$\frac{16}{9}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知各项均为正数的数列{an}满足an+1=sinan(n∈N*),则下列的说法中,正确的是(  )
A.{an}是单调递减数列B.{an}是单调递增数列
C.{an}是周期数列D.{an}是常数数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中a1=2,an+1=2-$\frac{1}{{a}_{n}}$,数列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*
(1)求证:数列{bn}是等差数列;
(2)设Tn是数列{($\frac{1}{3}$)n•bn}的前n项和,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥A-BCD的每个面都是正三角形,M,N分别是AB,CD的中点,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{BD}$=$\overrightarrow{c}$,则$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{c}$-$\overrightarrow{b}$)C.$\frac{1}{2}$($\overrightarrow{b}$+$\overrightarrow{c}$-$\overrightarrow{a}$)D.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$两两构成60°角,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=6,则$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow{b}$+3$\overrightarrow{c}$的长度为$2\sqrt{129}$.

查看答案和解析>>

同步练习册答案