精英家教网 > 高中数学 > 题目详情
(2013•宝山区二模)已知椭圆Γ:
x2
12
+
y2
4
=1

(1)直线AB过椭圆Γ的中心交椭圆于A、B两点,C是它的右顶点,当直线AB的斜率为1时,求△ABC的面积;
(2)设直线l:y=kx+2与椭圆Γ交于P、Q两点,且线段PQ的垂直平分线过椭圆Γ与y轴负半轴的交点D,求实数k的值.
分析:(1)由题意写出C点坐标,直线AB方程,联立直线方程与椭圆方程可求得交点A、B的纵坐标,设A(x1,y1),B(x2,y2),则S△ABC=
1
2
|OC||y1-y2|
,代入数值即可求得面积;
(2)联立直线l与椭圆方程消掉y得x的二次方程,设P(x1,y1),Q(x2,y2),线段PQ的中点H(x0,y0),由韦达定理及中点坐标公式可用k表示出中点坐标,由垂直可得
kDH•kPQ=-1,解出即得k值,注意检验△>0;
解答:解:(1)依题意,a=2
3
C(2
3
,0)
,直线AB的方程为y=x,
x2
12
+
y2
4
=1
y=x
,得y=±
3

设A(x1,y1)B(x2,y2),∵|OC|=2
3

S△ABC=
1
2
|OC|•|y1-y2|=
1
2
×2
3
×2
3
=6

(2)由
y=kx+2
x2
12
+
y2
4
=1
得(3k2+1)x2+12kx=0,△=(12k)2≥0,
依题意,k≠0,设P(x1,y1),Q(x2,y2),线段PQ的中点H(x0,y0),
x0=
x1+x2
2
=
-6k
3k2+1
y0=kx0+2=
2
3k2+1
,D(0,-2),
由kDH•kPQ=-1,得
2
3k2+1
+2
-
6k
3k2+1
•k=-1
,解得k=±
3
3

所以实数k的值为±
3
3
点评:本题考查直线与圆锥曲线的位置关系、三角形面积公式,韦达定理、判别式是解决该类题目的常用知识,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知a∈(
π
2
,π),sina=
3
5
,则tan(a-
π
4
)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知函数f(x)=x|x|.当x∈[a,a+1]时,不等式f(x+2a)>4f(x)恒成立,则实数a的取值范围是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知双曲线的方程为
x23
-y2=1
,则此双曲线的焦点到渐近线的距离为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)(文) 若
x≥1
y≥2
x+y≤6
,则目标函数z=2x+y的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知数列{an}的前n项和为Sn,且a1=2,nan+1=Sn+
n(n+1)3
.从{an}中抽出部分项ak1ak2,…,akn,…,(k1<k2<…<kn<…)组成的数列{akn}是等比数列,设该等比数列的公比为q,其中k1=1,n∈N*
(1)求a2的值;
(2)当q取最小时,求{kn}的通项公式;
(3)求k1+k2+…+kn的值.

查看答案和解析>>

同步练习册答案