精英家教网 > 高中数学 > 题目详情
4.等差数列{an}中,a1+a3+a5=π,则cosa3=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

分析 利用等差数列的性质求出a3,然后求解cosa3的值.

解答 解:等差数列{an}中,a1+a3+a5=π,
可得a3=$\frac{π}{3}$.
cosa3=cos$\frac{π}{3}$=$\frac{1}{2}$.
故选:B.

点评 本题考查等差数列的性质的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|x>1},N={x|-3<x<2},则集合M∩N等于(  )
A.{x|-3<x<2}B.{x|-3<x<1}C.{x|1<x<2}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义运算:$\overrightarrow{a}$?$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|sinθ,其中θ为向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角,若向量$\overrightarrow{m}$,$\overrightarrow{n}$满足|$\overrightarrow{m}$|=1,|$\overrightarrow{n}$|=2,$\overrightarrow{m}•\overrightarrow{n}$=-1,则|$\overrightarrow{m}$?$\overrightarrow{n}$|的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F1,F2为双曲线C的左右焦点,过F1的直线分别交C的左右两支于A,B两点,若△AF2B为等腰直角三角形,且∠AF2B=90°,那么C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=(x-1)0,g(x)=1
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{{x}^{2}}$,g(t)=|t|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的前n项和为Sn,若a1,a3,a4成等比数列,则$\frac{{S}_{3}-{S}_{2}}{{S}_{5}-{S}_{3}}$的值为(  )
A.1或2B.$\frac{1}{2}$C.2D.$\frac{1}{2}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知AB=1,C=50°,当B=40°时,BC的长取最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,则f(3)的取值范围[-1,20].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,且集合A={x|-2<x<3},集合B={x|-3≤x≤2},求:
(1)A∪B;
(2)A∩(∁UB).

查看答案和解析>>

同步练习册答案