精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥PABCD中,∠ABC=∠ACD90°,∠BAC=∠CAD60°PA⊥平面ABCDEPD的中点,PA2AB1

(Ⅰ)求四棱锥PABCD的体积V

(Ⅱ)若FPC的中点,求证:平面PAC⊥平面AEF

【答案】(Ⅰ);(Ⅱ)证明见解析.

【解析】

(Ⅰ)在RtABC中,AB1,∠BAC60°,故,由此能求出四棱锥PABCD的体积V

(Ⅱ)由PA⊥平面ABCD,知PACD,可证得CD⊥平面PACEFCD,由此能证明平面PAC⊥平面AEF

解:(Ⅰ)在RtABC中,AB1,∠BAC60°

RtACD中,AC2,∠CAD60°

∵四边形的面积为

所以

(Ⅱ)∵PA⊥平面ABCD平面ABCD

PACD

ACCDPAACA

CD⊥平面PAC

EF分别是PDPC的中点,∴EFCD

EF⊥平面PAC

EF平面AEF

∴平面PAC⊥平面AEF

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线,则下列结论正确的是(

A.直线的倾斜角是B.若直线

C.到直线的距离是D.与直线平行的直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:

温度

20

25

30

35

产卵数/个

5

20

100

325

(1)根据散点图判断哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);

(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)

参考数据:

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论的单调性;

(II)当,是否存在实数,使得,都有?若存在求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;

1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;

2)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

方案

防控等级

费用(单位:万元)

方案一

无措施

0

方案二

防控1级灾害

40

方案三

防控2级灾害

100

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,,点中点,平面

(1)求证:平面.

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直棱柱中,.

1)求异面直线所成的角的余弦值;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C

1)若圆Cx轴相切,求实数a的值;

2)若MN为圆C上不同的两点,过点MN分别作圆C的切线,若相交于点P,圆C上异于MN另有一点Q,满足,若直线上存在唯一的一个点T,使得,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和椭圆. 直线与椭圆交于不同的两点.

(Ⅰ) 求椭圆的离心率;

(Ⅱ) 当时,求的面积;

(Ⅲ)设直线与椭圆的另一个交点为,当中点时,求的值 .

查看答案和解析>>

同步练习册答案