精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

【答案】C

【解析】

由已知条件,结合抛物线性质求出A点坐标,求出坐标原点关于准线的对称点的坐标点B,由|PO||PB||PA|+|PO|的最小值为|AB|,由此能求出结果.

抛物线y2=8x的准线方程为x=-2,∵|AF|=6

A到准线的距离为6,即A点的横坐标为4,∵点A在抛物线上,不妨设为第一象限,

A的坐标A44)∵坐标原点关于准线的对称点的坐标为B-40),

|PO|=|PB|,∴|PA|+|PO|的最小值:|AB|=

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,顶点在底面的射影恰好是菱形对角线的交点,且,其中.

(1)当时,求证:

(2)当与平面所成角的正弦值为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201810月考考试中,成都外国语学校共有250名高三文科学生参加考试,数学成绩的频率分布直方图如图:

1)如果成绩大于130的为特别优秀,这250名学生中本次考试数学成绩特别优秀的大约多少人?

2)如果这次考试语文特别优秀的有5人,语文和数学两科都特别优秀的共有2人,从(1)中的数学成绩特别优秀的人中随机抽取2人,求选出的2人中恰有1名两科都特别优秀的概率.

3)根据(1),(2)的数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足为非零常数.

1)是否存在实数,使得数列成为等差数列或等比数列,若存在,找出所有的,及对应的通项公式;若不存在,说明理由;

2)当时,记,证明:数列是等比数列;

3)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论函数的单调性;

(2)若的极值点,且曲线在两点 处的切线互相平行,这两条切线在y轴上的截距分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱侧面

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上任意一点到其焦点的距离的最小值为1.为抛物线上的两动点(不重合且均异于原点),为坐标原点,直线的倾斜角分别为.

1)求抛物线方程;

2)若,求证直线过定点;

3)若为定值),探求直线是否过定点,并说明理由.

查看答案和解析>>

同步练习册答案