【题目】已知双曲线C1的渐近线是x±2y=0,焦点坐标是F1(-,0)、F2(,0).
(1)求双曲线C1的方程;
(2)若椭圆C2与双曲线C1有公共的焦点,且它们的离心率之和为,点P在椭圆C2上,且|PF1|=4,求∠F1PF2的大小.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )(多选)
A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥
B.有两个面平行且相似,其余各面都是梯形的多面体是棱台
C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥
D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·武邑中学]已知关于的一元二次方程,
(1)若一枚骰子掷两次所得点数分别是,,求方程有两根的概率;
(2)若,,求方程没有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.
(Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)设E为棱A1B1上的点.若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有一组圆:.下列四个命题其中真命题的序号是____
①存在一条定直线与所有的圆均相切;
②存在一条定直线与所有的圆均相交;
③存在一条定直线与所有的圆均不相交;
④所有的圆均不经过原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点为圆心的圆C被直线截得的弦长为.
(1)求圆C的标准方程:
(2)求过与圆C相切的直线方程:
(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):
甲:99,100,98,100,100,103;
乙:99,100,102,99,100,100.
(1)分别计算上述两组数据的平均数和方差
(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com